Back to Search
Start Over
Optical Nanosensing of Lipid Accumulation due to Enzyme Inhibition in Live Cells.
- Source :
-
ACS nano [ACS Nano] 2019 Aug 27; Vol. 13 (8), pp. 9363-9375. Date of Electronic Publication: 2019 Jul 22. - Publication Year :
- 2019
-
Abstract
- Drugs that influence enzymes of lipid metabolism can cause pathological accumulation of lipids in animal cells. Here, gold nanoparticles, acting as nanosensors that deliver surface-enhanced Raman scattering (SERS) spectra from living cells provide molecular evidence of lipid accumulation in lysosomes after treatment of cultured cells with the three tricyclic antidepressants (TCA) desipramine, amitryptiline, and imipramine. The vibrational spectra elucidate to great detail and with very high sensitivity the composition of the drug-induced lipid accumulations, also observed in fixed samples by electron microscopy and X-ray nanotomography. The nanoprobes show that mostly sphingomyelin is accumulated in the lysosomes but also other lipids, in particular, cholesterol. The observation of sphingomyelin accumulation supports the impairment of the enzyme acid sphingomyelinase. The SERS data were analyzed by random forest based approaches, in particular, by minimal depth variable selection and surrogate minimal depth (SMD), shown here to be particularly useful machine learning tools for the analysis of the lipid signals that contribute only weakly to SERS spectra of cells. SMD is used for the identification of molecular colocalization and interactions of the drug molecules with lipid membranes and for discriminating between the biochemical effects of the three different TCA molecules, in agreement with their different activity. The spectra also indicate that the protein composition is significantly changed in cells treated with the drugs.
- Subjects :
- Cholesterol chemistry
Cholesterol isolation & purification
Enzyme Inhibitors pharmacology
Gold chemistry
Lipids chemistry
Lipids isolation & purification
Lysosomes chemistry
Lysosomes drug effects
Metal Nanoparticles
Spectrum Analysis, Raman
Sphingomyelin Phosphodiesterase chemistry
Sphingomyelins chemistry
Biosensing Techniques
Enzymes drug effects
Lipid Accumulation Product
Nanoparticles chemistry
Sphingomyelin Phosphodiesterase antagonists & inhibitors
Subjects
Details
- Language :
- English
- ISSN :
- 1936-086X
- Volume :
- 13
- Issue :
- 8
- Database :
- MEDLINE
- Journal :
- ACS nano
- Publication Type :
- Academic Journal
- Accession number :
- 31314989
- Full Text :
- https://doi.org/10.1021/acsnano.9b04001