Back to Search
Start Over
Design of bile-based vesicles (BBVs) for hepatocytes specific delivery of Daclatasvir: Comparison of ex-vivo transenterocytic transport, in-vitro protein adsorption resistance and HepG2 cellular uptake of charged and β-sitosterol decorated vesicles.
- Source :
-
PloS one [PLoS One] 2019 Jul 16; Vol. 14 (7), pp. e0219752. Date of Electronic Publication: 2019 Jul 16 (Print Publication: 2019). - Publication Year :
- 2019
-
Abstract
- Daclatasvir is a new direct acting antiviral used in treatment of Hepatitis C virus, in an attempt to increase its hepatocytes specificity and uptake. It was encapsulated within bile based vesicles (BBVs) containing egg phosphatidyl choline, cholesterol and sodium deoxycholate fabricated by thin-film hydration method. A D-optimal mixture design was applied to study the effect of formulation variables on vesicular characteristics. The dependent variables picked were the particle size, polydispersity index, zeta potential and entrapment efficiency. The optimized bile based vesicles were subjected for further modifications to prepare miniaturized anionic (ABBVs), cationic (CBBVs) and Sito-G decorated BBVs (Sito-GBBVs) to be capable to penetrate liver fenestrae (<200 nm). The aim of the current work is to compare the potential of the ABBVs, CBBVs and Sito-GBBVs loaded with Daclatasvir for stability in simulated biological fluids, ex-vivo intestinal transenterocytic transport, HepG2 cellular uptake and resistance to blood protein adsorption. The miniaturized ABBVs, CBBVs and Sito-GBBVs showed acceptable stability in simulated biological fluids. CBBVs had the highest transenterocytic transport through intestinal membrane. The internalization of CBBVs into HepG2 cells was about 2.1 folds that of ABBVs and 1.45 folds that of Sito-GBBVs. ABBVs and Sito-GBBVs showed superior resistance to opsonization compared to CBBVs which showed significant increase in particle size (p˃0.05) due to protein adsorption. The miniaturized Sito-GBBVs constitute a promising strategy to overcome key biological barriers facing hepatocytes specific delivery of Daclatasvir.<br />Competing Interests: The authors have declared that no competing interests exist.
- Subjects :
- Adsorption
Animals
Biological Transport
Carbamates
Cholesterol chemistry
Deoxycholic Acid chemistry
Hep G2 Cells
Humans
Liposomes chemistry
Liver drug effects
Male
Particle Size
Phosphatidylcholines chemistry
Pyrrolidines
Rats
Rats, Wistar
Valine analogs & derivatives
Antiviral Agents administration & dosage
Drug Carriers
Drug Delivery Systems
Hepatocytes drug effects
Imidazoles administration & dosage
Sitosterols chemistry
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 14
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 31310613
- Full Text :
- https://doi.org/10.1371/journal.pone.0219752