Back to Search
Start Over
A data-driven, meaningful, easy to interpret, standardised accelerometer outcome variable for global surveillance.
- Source :
-
Journal of science and medicine in sport [J Sci Med Sport] 2019 Oct; Vol. 22 (10), pp. 1132-1138. Date of Electronic Publication: 2019 Jul 01. - Publication Year :
- 2019
-
Abstract
- Objectives: Our aim is to demonstrate how a data-driven accelerometer metric, the acceleration above which a person's most active minutes are accumulated, can (a) quantify the prevalence of meeting current physical activity guidelines for global surveillance and (b) moving forward, could inform accelerometer-driven physical activity guidelines. Unlike cut-point methods, the metric is population-independent (e.g. age) and potentially comparable across datasets.<br />Design: Cross-sectional, secondary data analysis.<br />Methods: Analyses were carried out on five datasets using wrist-worn accelerometers: children (N=145), adolescent girls (N=1669), office workers (N=114), pre- (N=1218) and post- (N=1316) menopausal women, and adults with type 2 diabetes (N=475). Open-source software (GGIR) was used to generate the magnitude of acceleration above which a person's most active 60, 30 and 2min are accumulated: M60 <subscript>ACC</subscript> ; M30 <subscript>ACC</subscript> and M2 <subscript>ACC</subscript> , respectively.<br />Results: The proportion of participants with M60 <subscript>ACC</subscript> (children) and M30 <subscript>ACC</subscript> (adults) values higher than accelerations representative of brisk walking (i.e., moderate-to-vigorous physical activity) ranged from 17 to 68% in children and 15 to 81% in adults, tending to decline with age. The proportion of pre-and post-menopausal women with M2 <subscript>ACC</subscript> values meeting thresholds for bone health ranged from 6 to 13%.<br />Conclusions: These metrics can be used for global surveillance of physical activity, including assessing prevalence of meeting current physical activity guidelines. As accelerometer and corresponding health data accumulate it will be possible to interpret the metrics relative to age- and sex- specific norms and derive evidence-based physical activity guidelines directly from accelerometer data for use in future global surveillance. This is where the potential advantages of these metrics lie.<br /> (Copyright © 2019 Sports Medicine Australia. Published by Elsevier Ltd. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1878-1861
- Volume :
- 22
- Issue :
- 10
- Database :
- MEDLINE
- Journal :
- Journal of science and medicine in sport
- Publication Type :
- Academic Journal
- Accession number :
- 31288983
- Full Text :
- https://doi.org/10.1016/j.jsams.2019.06.016