Back to Search Start Over

The AMPK system of salmonid fishes was expanded through genome duplication and is regulated by growth and immune status in muscle.

Authors :
Causey DR
Kim JH
Devlin RH
Martin SAM
Macqueen DJ
Source :
Scientific reports [Sci Rep] 2019 Jul 08; Vol. 9 (1), pp. 9819. Date of Electronic Publication: 2019 Jul 08.
Publication Year :
2019

Abstract

5'adenosine monophosphate-activated protein kinase (AMPK) is a master regulator of energy homeostasis in eukaryotes. This study identified expansions in the AMPK-α, -β and -γ families of salmonid fishes due to a history of genome duplication events, including five novel salmonid-specific AMPK subunit gene paralogue pairs. We tested the hypothesis that the expanded AMPK gene system of salmonids is transcriptionally regulated by growth and immunological status. As a model, we studied immune-stimulated coho salmon (Oncorhynchus kisutch) from three experiment groups sharing the same genetic background, but showing highly-divergent growth rates and nutritional status. Specifically, we compared wild-type and GH-transgenic fish, the latter achieving either enhanced or wild-type growth rate via ration manipulation. Transcript levels for the fifteen unique salmonid AMPK subunit genes were quantified in skeletal muscle after stimulation with bacterial or viral mimics to alter immune status. These analyses revealed a constitutive up-regulation of several AMPK-α and -γ subunit-encoding genes in GH-transgenic fish achieving accelerated growth. Further, immune stimulation caused a decrease in the expression of several AMPK subunit-encoding genes in GH-transgenic fish specifically. The dynamic expression responses observed suggest a role for the AMPK system in balancing energetic investment into muscle growth according to immunological status in salmonid fishes.

Details

Language :
English
ISSN :
2045-2322
Volume :
9
Issue :
1
Database :
MEDLINE
Journal :
Scientific reports
Publication Type :
Academic Journal
Accession number :
31285449
Full Text :
https://doi.org/10.1038/s41598-019-46129-4