Back to Search Start Over

Persistence and migration of tetracycline, sulfonamide, fluoroquinolone, and macrolide antibiotics in streams using a simulated hydrodynamic system.

Authors :
Liu X
Lv K
Deng C
Yu Z
Shi J
Johnson AC
Source :
Environmental pollution (Barking, Essex : 1987) [Environ Pollut] 2019 Sep; Vol. 252 (Pt B), pp. 1532-1538. Date of Electronic Publication: 2019 Jun 26.
Publication Year :
2019

Abstract

The potential persistence and migration of 14 antibiotics comprising sulfonamides, fluoroquinolones, macrolides and tetracyclines were conducted using a 50-d recirculating flume study supported by batch attenuation experiments with spiked concentrations. The study demonstrated that photodegradation was the dominant attenuation process for these antibiotics in the water environment. The half-lives of 2-26 d were in order of sulfadiazine > sulfadimethoxine > sulfamerazine > sulfamethoxazole > sulfamethazine > sulfathiazole > ofloxacin > enrofloxacin > norfloxacin > ciprofloxacin > erythromycin > tetracycline > roxithromycin > oxytetracycline. These modest half-lives meant that the antibiotics were predicted to travel 30-400 km down a typical river before half the concentration would be lost. All antibiotics were detected on the surface sediment in the flume study. Under hyporheic exchange, some of them continually migrated into the deeper sediment and also the sediment pore water. All fluoroquinolones were detected in the sediments. The sulfonamides were detected in the pore water with relatively high concentrations and frequencies. Sulfadiazine, sulfamethazine and sulfathiazole in the upper layer pore water were found to be approaching equilibrium with the surface water. The high presence of sulfonamides in the pore water indicated that their high mobility and persistence potentially pose a risk to hyporheic zone.<br /> (Copyright © 2019 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1873-6424
Volume :
252
Issue :
Pt B
Database :
MEDLINE
Journal :
Environmental pollution (Barking, Essex : 1987)
Publication Type :
Academic Journal
Accession number :
31277022
Full Text :
https://doi.org/10.1016/j.envpol.2019.06.095