Back to Search
Start Over
HyperFoods: Machine intelligent mapping of cancer-beating molecules in foods.
- Source :
-
Scientific reports [Sci Rep] 2019 Jul 03; Vol. 9 (1), pp. 9237. Date of Electronic Publication: 2019 Jul 03. - Publication Year :
- 2019
-
Abstract
- Recent data indicate that up-to 30-40% of cancers can be prevented by dietary and lifestyle measures alone. Herein, we introduce a unique network-based machine learning platform to identify putative food-based cancer-beating molecules. These have been identified through their molecular biological network commonality with clinically approved anti-cancer therapies. A machine-learning algorithm of random walks on graphs (operating within the supercomputing DreamLab platform) was used to simulate drug actions on human interactome networks to obtain genome-wide activity profiles of 1962 approved drugs (199 of which were classified as "anti-cancer" with their primary indications). A supervised approach was employed to predict cancer-beating molecules using these 'learned' interactome activity profiles. The validated model performance predicted anti-cancer therapeutics with classification accuracy of 84-90%. A comprehensive database of 7962 bioactive molecules within foods was fed into the model, which predicted 110 cancer-beating molecules (defined by anti-cancer drug likeness threshold of >70%) with expected capacity comparable to clinically approved anti-cancer drugs from a variety of chemical classes including flavonoids, terpenoids, and polyphenols. This in turn was used to construct a 'food map' with anti-cancer potential of each ingredient defined by the number of cancer-beating molecules found therein. Our analysis underpins the design of next-generation cancer preventative and therapeutic nutrition strategies.
Details
- Language :
- English
- ISSN :
- 2045-2322
- Volume :
- 9
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Scientific reports
- Publication Type :
- Academic Journal
- Accession number :
- 31270435
- Full Text :
- https://doi.org/10.1038/s41598-019-45349-y