Back to Search
Start Over
Facultative Anaerobes Shape Multispecies Biofilms Composed of Meat Processing Surface Bacteria and Escherichia coli O157:H7 or Salmonella enterica Serovar Typhimurium.
- Source :
-
Applied and environmental microbiology [Appl Environ Microbiol] 2019 Aug 14; Vol. 85 (17). Date of Electronic Publication: 2019 Aug 14 (Print Publication: 2019). - Publication Year :
- 2019
-
Abstract
- This study investigated the microbial dynamics in multispecies biofilms of Escherichia coli O157:H7 strain 1934 (O157) or Salmonella enterica serovar Typhimurium ATCC 14028 (ST) and 40 strains of meat processing surface bacteria (MPB). Biofilms of O157 or ST with/without MPB were developed on stainless steel coupons at 15°C for up to 6 days. Bacteria in suspensions (inoculum, days 2 and 6) and biofilms (days 2 and 6) were enumerated by plating. The composition of multispecies cultures was determined by 16S rRNA gene sequencing. In suspensions, levels of O157 and ST were ∼2 log higher in single-species than in multispecies cultures on both sampling days. ST was 3 log higher in single-species than in multispecies biofilms. A similar trend, though to a lesser extent, was observed for O157 in biofilms on day 2 but not on day 6. No difference ( P > 0.05) in bacterial counts was noted for the two MPB-pathogen cocultures at any time during incubation. Bacterial diversity in multispecies cultures decreased with incubation time, irrespective of the pathogen or culture type. The changes in the relative abundance of MPB were similar for the two MPB-pathogen cocultures, though different interbacterial interactions were noted. Respective fractions of ST and O157 were 2.1% and 0.97% initially and then 0.10% and 0.07% on day 2, and 0.60% and 0.04% on day 6. The relative proportions of facultative anaerobes in both multispecies cultures were greater in both suspensions and biofilms than in the inoculum. Citrobacter , Hafnia , Aeromonas , and Carnobacterium predominated in biofilms but not always in the planktonic cultures. IMPORTANCE Results of this study demonstrate that Salmonella enterica serovar Typhimurium and E. coli O157:H7 can integrate into biofilms when cocultured with bacteria from meat plant processing surfaces. However, the degree of biofilm formation for both pathogens was substantially reduced in the presence of the competing microbiota, with S. Typhimurium more greatly affected than E. coli O157:H7. The expression of extracellular determinants such as curli and cellulose appears to be less important for biofilm formation of the pathogens in multispecies cultures than in monoculture. In contrast to previous reports regarding food processing surface bacteria, data collected here also demonstrate that facultative anaerobes may have a competitive edge over strict aerobes in establishing multispecies biofilms. It would be important to take into account the presence of background bacteria when evaluating the potential persistence of a pathogen in food processing facilities.<br /> (© Crown copyright 2019.)
Details
- Language :
- English
- ISSN :
- 1098-5336
- Volume :
- 85
- Issue :
- 17
- Database :
- MEDLINE
- Journal :
- Applied and environmental microbiology
- Publication Type :
- Academic Journal
- Accession number :
- 31253683
- Full Text :
- https://doi.org/10.1128/AEM.01123-19