Back to Search Start Over

Cellular Trafficking of Sn-2 Phosphatidylcholine Prodrugs Studied with Fluorescence Lifetime Imaging and Super-resolution Microscopy.

Authors :
Maji D
Lu J
Sarder P
Schmieder AH
Cui G
Yang X
Pan D
Lew MD
Achilefu S
Lanza GM
Source :
Precision nanomedicine [Precis Nanomed] 2018 Jul; Vol. 1 (2), pp. 128-145. Date of Electronic Publication: 2018 Jun 30.
Publication Year :
2018

Abstract

While the in vivo efficacy of Sn-2 phosphatidylcholine prodrugs incorporated into targeted, non-pegylated lipid-encapsulated nanoparticles was demonstrated in prior preclinical studies, the microscopic details of cell prodrug internalization and trafficking events are unknown. Classic fluorescence microscopy, fluorescence lifetime imaging microscopy, and single-molecule super-resolution microscopy were used to investigate the cellular handling of doxorubicin-prodrug and AlexaFluorâ„¢-488-prodrug. Sn-2 phosphatidylcholine prodrugs delivered by hemifusion of nanoparticle and cell phospholipid membranes functioned as phosphatidylcholine mimics, circumventing the challenges of endosome sequestration and release. Phosphatidylcholine prodrugs in the outer cell membrane leaflet translocated to the inner membrane leaflet by ATP-dependent and ATP-independent mechanisms and distributed broadly within the cytosolic membranes over the next 12 h. A portion of the phosphatidylcholine prodrug populated vesicle membranes trafficked to the perinuclear Golgi/ER region, where the drug was enzymatically liberated and activated. Native doxorubicin entered the cells, passed rapidly to the nucleus, and bound to dsDNA, whereas DOX was first enzymatically liberated from DOX-prodrug within the cytosol, particularly in the perinuclear region, before binding nuclear dsDNA. Much of DOX-prodrug was initially retained within intracellular membranes. In vitro anti-proliferation effectiveness of the two drug delivery approaches was equivalent at 48 h, suggesting that residual intracellular DOX-prodrug may constitute a slow-release drug reservoir that enhances effectiveness. We have demonstrated that Sn-2 phosphatidylcholine prodrugs function as phosphatidylcholine mimics following reported pathways of phosphatidylcholine distribution and metabolism. Drug complexed to the Sn-2 fatty acid is enzymatically liberated and reactivated over many hours, which may enhance efficacy overtime.

Details

Language :
English
ISSN :
2639-9431
Volume :
1
Issue :
2
Database :
MEDLINE
Journal :
Precision nanomedicine
Publication Type :
Academic Journal
Accession number :
31249994
Full Text :
https://doi.org/10.33218/prnano1(2).180724.1