Back to Search Start Over

Identifying patients at highest-risk: the best timing to apply a readmission predictive model.

Authors :
Flaks-Manov N
Topaz M
Hoshen M
Balicer RD
Shadmi E
Source :
BMC medical informatics and decision making [BMC Med Inform Decis Mak] 2019 Jun 26; Vol. 19 (1), pp. 118. Date of Electronic Publication: 2019 Jun 26.
Publication Year :
2019

Abstract

Background: Most of readmission prediction models are implemented at the time of patient discharge. However, interventions which include an early in-hospital component are critical in reducing readmissions and improving patient outcomes. Thus, at-discharge high-risk identification may be too late for effective intervention. Nonetheless, the tradeoff between early versus at-discharge prediction and the optimal timing of the risk prediction model application remains to be determined. We examined a high-risk patient selection process with readmission prediction models using data available at two time points: at admission and at the time of hospital discharge.<br />Methods: An historical prospective study of hospitalized adults (≥65 years) discharged alive from internal medicine units in Clalit's (the largest integrated payer-provider health fund in Israel) general hospitals in 2015. The outcome was all-cause 30-day emergency readmissions to any internal medicine ward at any hospital. We used the previously validated Preadmission Readmission Detection Model (PREADM) and developed a new model incorporating PREADM with hospital data (PREADM-H). We compared the percentage of overlap between the models and calculated the positive predictive value (PPV) for the subgroups identified by each model separately and by both models.<br />Results: The final cohort included 35,156 index hospital admissions. The PREADM-H model included 17 variables with a C-statistic of 0.68 (95% CI: 0.67-0.70) and PPV of 43.0% in the highest-risk categories. Of patients categorized by the PREADM-H in the highest-risk decile, 78% were classified similarly by the PREADM. The 22% (n = 229) classified by the PREADM-H at the highest decile, but not by the PREADM, had a PPV of 37%. Conversely, those classified by the PREADM into the highest decile but not by the PREADM-H (n = 218) had a PPV of 31%.<br />Conclusions: The timing of readmission risk prediction makes a difference in terms of the population identified at each prediction time point - at-admission or at-discharge. Our findings suggest that readmission risk identification should incorporate a two time-point approach in which preadmission data is used to identify high-risk patients as early as possible during the index admission and an "all-hospital" model is applied at discharge to identify those that incur risk during the hospital stay.

Details

Language :
English
ISSN :
1472-6947
Volume :
19
Issue :
1
Database :
MEDLINE
Journal :
BMC medical informatics and decision making
Publication Type :
Academic Journal
Accession number :
31242886
Full Text :
https://doi.org/10.1186/s12911-019-0836-6