Back to Search
Start Over
Continuous sulfur biotransformation in an anaerobic-anoxic sequential batch reactor involving sulfate reduction and denitrifying sulfide oxidization.
- Source :
-
Chemosphere [Chemosphere] 2019 Nov; Vol. 234, pp. 568-578. Date of Electronic Publication: 2019 Jun 15. - Publication Year :
- 2019
-
Abstract
- The pathways and intermediates of continuous sulfur biotransformation in an anaerobic and anoxic sequential batch reactor (AA-SBR) involving sulfate reduction (SR) and denitrifying sulfide oxidization (DSO) were investigated. In the anoxic phase, DSO occurred in two sequential steps, the oxidation of sulfide (S <superscript>2-</superscript> ) to elemental sulfur (S <superscript>0</superscript> ) and the oxidation of S <superscript>0</superscript> to sulfate (SO <subscript>4</subscript> <superscript>2-</superscript> ). The oxidation rate of S <superscript>2-</superscript> to S <superscript>0</superscript> was 3.31 times faster than that of S <superscript>0</superscript> to SO <subscript>4</subscript> <superscript>2-</superscript> , resulting in the accumulation of S <superscript>0</superscript> as a desired intermediate under S <superscript>2-</superscript> -S/NO <subscript>3</subscript> <superscript>-</superscript> -N ratio (molar ratio) of 0.9:1. Although, approximately 60% of generated S <superscript>0</superscript> suspended in the effluent, about 40% of S <superscript>0</superscript> retained in the sludge, which could be further oxidized or reduced in anoxic or anaerobic phase. In anoxic, S <superscript>0</superscript> was subsequently oxidized to SO <subscript>4</subscript> <superscript>2-</superscript> under S <superscript>2-</superscript> -S/NO <subscript>3</subscript> <superscript>-</superscript> -N ratio of 0.5:1. In anaerobic, S <superscript>0</superscript> coexist with SO <subscript>4</subscript> <superscript>2-</superscript> (in fresh wastewater) were simultaneously reduced to S <superscript>2-</superscript> , and the reduction rate of SO <subscript>4</subscript> <superscript>2-</superscript> to S <superscript>2-</superscript> was 3.17 times faster than that of S <superscript>0</superscript> to S <superscript>2-</superscript> , resulting in a higher production of S <superscript>0</superscript> in subsequent anoxic phase. Microbial community analysis indicated that SO <subscript>4</subscript> <superscript>2-</superscript> /S <superscript>0</superscript> -reducing bacteria (e.g. Desulfomicrobium and Desulfuromonas) and S <superscript>2-</superscript> /S <superscript>0</superscript> -oxidizing bacteria (e.g. Paracoccus and Thermothrix) co-participated in continuous sulfur biotransformation in the AA-SBR. A conceptual model was established to describe these main processes and key intermediates. The research offers a new insight into the reaction processes optimization for S <superscript>0</superscript> recovery and simultaneous removal of SO <subscript>4</subscript> <superscript>2-</superscript> and NO <subscript>3</subscript> <superscript>-</superscript> in an AA-SBR.<br /> (Copyright © 2019 Elsevier Ltd. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-1298
- Volume :
- 234
- Database :
- MEDLINE
- Journal :
- Chemosphere
- Publication Type :
- Academic Journal
- Accession number :
- 31229718
- Full Text :
- https://doi.org/10.1016/j.chemosphere.2019.06.109