Back to Search
Start Over
An integrative cross-omics analysis of DNA methylation sites of glucose and insulin homeostasis.
- Source :
-
Nature communications [Nat Commun] 2019 Jun 13; Vol. 10 (1), pp. 2581. Date of Electronic Publication: 2019 Jun 13. - Publication Year :
- 2019
-
Abstract
- Despite existing reports on differential DNA methylation in type 2 diabetes (T2D) and obesity, our understanding of its functional relevance remains limited. Here we show the effect of differential methylation in the early phases of T2D pathology by a blood-based epigenome-wide association study of 4808 non-diabetic Europeans in the discovery phase and 11,750 individuals in the replication. We identify CpGs in LETM1, RBM20, IRS2, MAN2A2 and the 1q25.3 region associated with fasting insulin, and in FCRL6, SLAMF1, APOBEC3H and the 15q26.1 region with fasting glucose. In silico cross-omics analyses highlight the role of differential methylation in the crosstalk between the adaptive immune system and glucose homeostasis. The differential methylation explains at least 16.9% of the association between obesity and insulin. Our study sheds light on the biological interactions between genetic variants driving differential methylation and gene expression in the early pathogenesis of T2D.
- Subjects :
- Adult
Aged
Aged, 80 and over
Computer Simulation
CpG Islands genetics
Diabetes Mellitus, Type 2 metabolism
Epigenesis, Genetic physiology
Epigenomics methods
Female
Gene Expression Profiling methods
Gene Expression Regulation genetics
Genome-Wide Association Study methods
Homeostasis genetics
Humans
Male
Metabolic Networks and Pathways genetics
Middle Aged
Obesity metabolism
Polymorphism, Single Nucleotide physiology
Young Adult
DNA Methylation physiology
Diabetes Mellitus, Type 2 genetics
Glucose metabolism
Insulin metabolism
Obesity genetics
Subjects
Details
- Language :
- English
- ISSN :
- 2041-1723
- Volume :
- 10
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Nature communications
- Publication Type :
- Academic Journal
- Accession number :
- 31197173
- Full Text :
- https://doi.org/10.1038/s41467-019-10487-4