Back to Search Start Over

Optimization and partial purification of beta-galactosidase production by Aspergillus niger isolated from Brazilian soils using soybean residue.

Authors :
Martarello RD
Cunha L
Cardoso SL
de Freitas MM
Silveira D
Fonseca-Bazzo YM
Homem-de-Mello M
Filho EXF
Magalhães PO
Source :
AMB Express [AMB Express] 2019 Jun 10; Vol. 9 (1), pp. 81. Date of Electronic Publication: 2019 Jun 10.
Publication Year :
2019

Abstract

β-Galactosidases are widely used for industrial applications. These enzymes could be used in reactions of lactose hydrolysis and transgalactosylation. The objective of this study was the production, purification, and characterization of an extracellular β-galactosidase from a filamentous fungus, Aspergillus niger. The enzyme production was optimized by a factorial design. Maximal β-galactosidase activity (24.64 U/mL) was found in the system containing 2% of a soybean residue (w/v) at initial pH 7.0, 28 °C, 120 rpm in 7 days. ANOVA of the optimization study indicated that the response data on temperature and pH were significant (p < 0.05). The regression equation indicated that the R <superscript>2</superscript> is 0.973. Ultrafiltration at a 100 and 30 kDa cutoff followed by gel filtration and anion exchange chromatography were carried out to purify the fungal β-galactosidase. SDS-PAGE revealed a protein with molecular weight of approximately 76 kDa. The partially purified enzyme showed an optimum temperature of 50 °C and optimum pH of 5.0, being stable under these conditions for 15 h. The enzyme was exposed to conditions approaching gastric pH and in pepsin's presence, 80% of activity was preserved after 2 h. These results reveal a A. niger β-galactosidase obtained from residue with favorable characteristics for food industries.

Details

Language :
English
ISSN :
2191-0855
Volume :
9
Issue :
1
Database :
MEDLINE
Journal :
AMB Express
Publication Type :
Academic Journal
Accession number :
31183613
Full Text :
https://doi.org/10.1186/s13568-019-0805-6