Back to Search Start Over

Development of substituted pyrido[3,2-d]pyrimidines as potent and selective dihydrofolate reductase inhibitors for pneumocystis pneumonia infection.

Authors :
Shah K
Queener S
Cody V
Pace J
Gangjee A
Source :
Bioorganic & medicinal chemistry letters [Bioorg Med Chem Lett] 2019 Aug 01; Vol. 29 (15), pp. 1874-1880. Date of Electronic Publication: 2019 Jun 04.
Publication Year :
2019

Abstract

Pneumocystis pneumonia (PCP) caused by Pneumocystis jirovecii (pj) can lead to serious health consequences in patients with an immunocompromised system. Trimethoprim (TMP), used as first-line therapy in combination with sulfamethoxazole, is a selective but only moderately potent pj dihydrofolate reductase (pjDHFR) inhibitor, whereas non-clinical pjDHFR inhibitors, such as, piritrexim and trimetrexate are potent but non-selective pjDHFR inhibitors. To meet the clinical needs for a potent and selective pjDHFR inhibitor for PCP treatment, fourteen 6-substituted pyrido[3,2-d]pyrimidines were developed. Comparison of the amino acid residues in the active site of pjDHFR and human DHFR (hDHFR) revealed prominent amino acid differences which could be exploited to structurally design potent and selective pjDHFR inhibitors. Molecular modeling followed by enzyme assays of the compounds revealed 15 as the best compound of the series with an IC <subscript>50</subscript> of 80 nM and 28-fold selectivity for inhibiting pjDHFR over hDHFR. Compound 15 serves as the lead analog for further structural variations to afford more potent and selective pjDHFR inhibitors.<br /> (Copyright © 2019 Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1464-3405
Volume :
29
Issue :
15
Database :
MEDLINE
Journal :
Bioorganic & medicinal chemistry letters
Publication Type :
Academic Journal
Accession number :
31176699
Full Text :
https://doi.org/10.1016/j.bmcl.2019.06.004