Back to Search
Start Over
CAIX Regulates Invadopodia Formation through Both a pH-Dependent Mechanism and Interplay with Actin Regulatory Proteins.
- Source :
-
International journal of molecular sciences [Int J Mol Sci] 2019 Jun 04; Vol. 20 (11). Date of Electronic Publication: 2019 Jun 04. - Publication Year :
- 2019
-
Abstract
- Tumor metastasis is tightly linked with invasive membrane protrusions, invadopodia, formed by actively invading tumor cells. Hypoxia and pH modulation play a role in the invadopodia formation and in their matrix degradation ability. Tumor-associated carbonic anhydrase IX (CAIX), induced by hypoxia, is essential for pH regulation and migration, predisposing it as an active component of invadopodia. To investigate this assumption, we employed silencing and inhibition of CA9, invadopodia isolation and matrix degradation assay. Quail chorioallantoic membranes with implanted tumor cells, and lung colonization assay in murine model were used to assess efficiency of in vivo invasion and the impact of CAIX targeting antibodies. We showed that CAIX co-distributes to invadopodia with cortactin, MMP14, NBCe1, and phospho-PKA. Suppression or enzymatic inhibition of CAIX leads to impaired invadopodia formation and matrix degradation. Loss of CAIX attenuated phosphorylation of Y421-cortactin and influenced molecular machinery coordinating actin polymerization essential for invadopodia growth. Treatment of tumor cells by CAIX-specific antibodies against carbonic or proteoglycan domains results in reduced invasion and extravasation in vivo . For the first time, we demonstrated in vivo localization of CAIX within invadopodia. Our findings confirm the key role of CAIX in the metastatic process and gives rationale for its targeting during anti-metastatic therapy.
- Subjects :
- Actins metabolism
Animals
Antineoplastic Agents, Immunological pharmacology
Carbonic Anhydrase IX antagonists & inhibitors
Carbonic Anhydrase IX metabolism
Fluorescent Antibody Technique
Humans
Mice
Neoplasm Metastasis
Neoplasms drug therapy
Neoplasms etiology
Neoplasms metabolism
Neoplasms pathology
Phosphorylation
Proteolysis
Signal Transduction
Sodium-Bicarbonate Symporters metabolism
Actin-Related Protein 2-3 Complex metabolism
Carbonic Anhydrase IX genetics
Hydrogen-Ion Concentration
Podosomes metabolism
Subjects
Details
- Language :
- English
- ISSN :
- 1422-0067
- Volume :
- 20
- Issue :
- 11
- Database :
- MEDLINE
- Journal :
- International journal of molecular sciences
- Publication Type :
- Academic Journal
- Accession number :
- 31167468
- Full Text :
- https://doi.org/10.3390/ijms20112745