Back to Search Start Over

Mutations in Both the Surface and Transmembrane Envelope Glycoproteins of the RAV-2 Subgroup B Avian Sarcoma and Leukosis Virus Are Required to Escape the Antiviral Effect of a Secreted Form of the Tvb S3 Receptor †.

Authors :
Yin X
Melder DC
Payne WS
Dodgson JB
Federspiel MJ
Source :
Viruses [Viruses] 2019 May 31; Vol. 11 (6). Date of Electronic Publication: 2019 May 31.
Publication Year :
2019

Abstract

The subgroup A through E avian sarcoma and leukosis viruses ASLV(A) through ASLV(E) are a group of highly related alpharetroviruses that have evolved to use very different host protein families as receptors. We have exploited genetic selection strategies to force the replication-competent ASLVs to naturally evolve and acquire mutations to escape the pressure on virus entry and yield a functional replicating virus. In this study, evolutionary pressure was exerted on ASLV(B) virus entry and replication using a secreted for of its Tvb receptor. As expected, mutations in the ASLV(B) surface glycoprotein hypervariable regions were selected that knocked out the ability for the mutant glycoprotein to bind the sTvb <superscript>S3</superscript> -IgG inhibitor. However, the subgroup B Rous associated virus 2 (RAV-2) also required additional mutations in the C-terminal end of the SU glycoprotein and multiple regions of TM highlighting the importance of the entire viral envelope glycoprotein trimer structure to mediate the entry process efficiently. These mutations altered the normal two-step ASLV membrane fusion process to enable infection.

Details

Language :
English
ISSN :
1999-4915
Volume :
11
Issue :
6
Database :
MEDLINE
Journal :
Viruses
Publication Type :
Academic Journal
Accession number :
31159208
Full Text :
https://doi.org/10.3390/v11060500