Back to Search Start Over

Large scale multifactorial likelihood quantitative analysis of BRCA1 and BRCA2 variants: An ENIGMA resource to support clinical variant classification.

Authors :
Parsons MT
Tudini E
Li H
Hahnen E
Wappenschmidt B
Feliubadaló L
Aalfs CM
Agata S
Aittomäki K
Alducci E
Alonso-Cerezo MC
Arnold N
Auber B
Austin R
Azzollini J
Balmaña J
Barbieri E
Bartram CR
Blanco A
Blümcke B
Bonache S
Bonanni B
Borg Å
Bortesi B
Brunet J
Bruzzone C
Bucksch K
Cagnoli G
Caldés T
Caliebe A
Caligo MA
Calvello M
Capone GL
Caputo SM
Carnevali I
Carrasco E
Caux-Moncoutier V
Cavalli P
Cini G
Clarke EM
Concolino P
Cops EJ
Cortesi L
Couch FJ
Darder E
de la Hoya M
Dean M
Debatin I
Del Valle J
Delnatte C
Derive N
Diez O
Ditsch N
Domchek SM
Dutrannoy V
Eccles DM
Ehrencrona H
Enders U
Evans DG
Farra C
Faust U
Felbor U
Feroce I
Fine M
Foulkes WD
Galvao HCR
Gambino G
Gehrig A
Gensini F
Gerdes AM
Germani A
Giesecke J
Gismondi V
Gómez C
Gómez Garcia EB
González S
Grau E
Grill S
Gross E
Guerrieri-Gonzaga A
Guillaud-Bataille M
Gutiérrez-Enríquez S
Haaf T
Hackmann K
Hansen TVO
Harris M
Hauke J
Heinrich T
Hellebrand H
Herold KN
Honisch E
Horvath J
Houdayer C
Hübbel V
Iglesias S
Izquierdo A
James PA
Janssen LAM
Jeschke U
Kaulfuß S
Keupp K
Kiechle M
Kölbl A
Krieger S
Kruse TA
Kvist A
Lalloo F
Larsen M
Lattimore VL
Lautrup C
Ledig S
Leinert E
Lewis AL
Lim J
Loeffler M
López-Fernández A
Lucci-Cordisco E
Maass N
Manoukian S
Marabelli M
Matricardi L
Meindl A
Michelli RD
Moghadasi S
Moles-Fernández A
Montagna M
Montalban G
Monteiro AN
Montes E
Mori L
Moserle L
Müller CR
Mundhenke C
Naldi N
Nathanson KL
Navarro M
Nevanlinna H
Nichols CB
Niederacher D
Nielsen HR
Ong KR
Pachter N
Palmero EI
Papi L
Pedersen IS
Peissel B
Perez-Segura P
Pfeifer K
Pineda M
Pohl-Rescigno E
Poplawski NK
Porfirio B
Quante AS
Ramser J
Reis RM
Revillion F
Rhiem K
Riboli B
Ritter J
Rivera D
Rofes P
Rump A
Salinas M
Sánchez de Abajo AM
Schmidt G
Schoenwiese U
Seggewiß J
Solanes A
Steinemann D
Stiller M
Stoppa-Lyonnet D
Sullivan KJ
Susman R
Sutter C
Tavtigian SV
Teo SH
Teulé A
Thomassen M
Tibiletti MG
Tischkowitz M
Tognazzo S
Toland AE
Tornero E
Törngren T
Torres-Esquius S
Toss A
Trainer AH
Tucker KM
van Asperen CJ
van Mackelenbergh MT
Varesco L
Vargas-Parra G
Varon R
Vega A
Velasco Á
Vesper AS
Viel A
Vreeswijk MPG
Wagner SA
Waha A
Walker LC
Walters RJ
Wang-Gohrke S
Weber BHF
Weichert W
Wieland K
Wiesmüller L
Witzel I
Wöckel A
Woodward ER
Zachariae S
Zampiga V
Zeder-Göß C
Lázaro C
De Nicolo A
Radice P
Engel C
Schmutzler RK
Goldgar DE
Spurdle AB
Source :
Human mutation [Hum Mutat] 2019 Sep; Vol. 40 (9), pp. 1557-1578.
Publication Year :
2019

Abstract

The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions. Classifications were compared with information not yet included in the likelihood model, and evidence strengths aligned to those recommended for ACMG/AMP classification codes. Altered mRNA splicing or function relative to known nonpathogenic variant controls were moderately to strongly predictive of variant pathogenicity. Variant absence in population datasets provided supporting evidence for variant pathogenicity. These findings have direct relevance for BRCA1 and BRCA2 variant evaluation, and justify the need for gene-specific calibration of evidence types used for variant classification.<br /> (© 2019 Wiley Periodicals, Inc.)

Details

Language :
English
ISSN :
1098-1004
Volume :
40
Issue :
9
Database :
MEDLINE
Journal :
Human mutation
Publication Type :
Academic Journal
Accession number :
31131967
Full Text :
https://doi.org/10.1002/humu.23818