Back to Search
Start Over
A chemical kinetic basis for measuring translation initiation and elongation rates from ribosome profiling data.
- Source :
-
PLoS computational biology [PLoS Comput Biol] 2019 May 23; Vol. 15 (5), pp. e1007070. Date of Electronic Publication: 2019 May 23 (Print Publication: 2019). - Publication Year :
- 2019
-
Abstract
- Analysis methods based on simulations and optimization have been previously developed to estimate relative translation rates from next-generation sequencing data. Translation involves molecules and chemical reactions, hence bioinformatics methods consistent with the laws of chemistry and physics are more likely to produce accurate results. Here, we derive simple equations based on chemical kinetic principles to measure the translation-initiation rate, transcriptome-wide elongation rate, and individual codon translation rates from ribosome profiling experiments. Our methods reproduce the known rates from ribosome profiles generated from detailed simulations of translation. By applying our methods to data from S. cerevisiae and mouse embryonic stem cells, we find that the extracted rates reproduce expected correlations with various molecular properties, and we also find that mouse embryonic stem cells have a global translation speed of 5.2 AA/s, in agreement with previous reports that used other approaches. Our analysis further reveals that a codon can exhibit up to 26-fold variability in its translation rate depending upon its context within a transcript. This broad distribution means that the average translation rate of a codon is not representative of the rate at which most instances of that codon are translated, and it suggests that translational regulation might be used by cells to a greater degree than previously thought.<br />Competing Interests: The authors have declared that no competing interests exist.
- Subjects :
- Animals
Codon genetics
Codon metabolism
Computational Biology
Computer Simulation
Kinetics
Mice
Models, Biological
Mouse Embryonic Stem Cells metabolism
Nucleic Acid Conformation
RNA Caps chemistry
RNA Caps genetics
RNA Caps metabolism
RNA, Fungal chemistry
RNA, Fungal genetics
RNA, Fungal metabolism
Ribosomes metabolism
Saccharomyces cerevisiae genetics
Saccharomyces cerevisiae metabolism
Transcriptome
Peptide Chain Elongation, Translational
Peptide Chain Initiation, Translational
Subjects
Details
- Language :
- English
- ISSN :
- 1553-7358
- Volume :
- 15
- Issue :
- 5
- Database :
- MEDLINE
- Journal :
- PLoS computational biology
- Publication Type :
- Academic Journal
- Accession number :
- 31120880
- Full Text :
- https://doi.org/10.1371/journal.pcbi.1007070