Back to Search
Start Over
Chimeric dihydrofolate reductases display properties of modularity and biophysical diversity.
- Source :
-
Protein science : a publication of the Protein Society [Protein Sci] 2019 Jul; Vol. 28 (7), pp. 1359-1367. Date of Electronic Publication: 2019 May 30. - Publication Year :
- 2019
-
Abstract
- While reverse genetics and functional genomics have long affirmed the role of individual mutations in determining protein function, there have been fewer studies addressing how large-scale changes in protein sequences, such as in entire modular segments, influence protein function and evolution. Given how recombination can reassort protein sequences, these types of changes may play an underappreciated role in how novel protein functions evolve in nature. Such studies could aid our understanding of whether certain organismal phenotypes related to protein function-such as growth in the presence or absence of an antibiotic-are robust with respect to the identity of certain modular segments. In this study, we combine molecular genetics with biochemical and biophysical methods to gain a better understanding of protein modularity in dihydrofolate reductase (DHFR), an enzyme target of antibiotics also widely used as a model for protein evolution. We replace an integral α-helical segment of Escherichia coli DHFR with segments from a number of different organisms (many nonmicrobial) and examine how these chimeric enzymes affect organismal phenotypes (e.g., resistance to an antibiotic) as well as biophysical properties of the enzyme (e.g., thermostability). We find that organismal phenotypes and enzyme properties are highly sensitive to the identity of DHFR modules, and that this chimeric approach can create enzymes with diverse biophysical characteristics.<br /> (© 2019 The Protein Society.)
Details
- Language :
- English
- ISSN :
- 1469-896X
- Volume :
- 28
- Issue :
- 7
- Database :
- MEDLINE
- Journal :
- Protein science : a publication of the Protein Society
- Publication Type :
- Academic Journal
- Accession number :
- 31095809
- Full Text :
- https://doi.org/10.1002/pro.3646