Back to Search Start Over

Ginsenoside metabolite compound-K regulates macrophage function through inhibition of β-arrestin2.

Authors :
Wang R
Zhang M
Hu S
Liu K
Tai Y
Tao J
Zhou W
Zhao Z
Wang Q
Wei W
Source :
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie [Biomed Pharmacother] 2019 Jul; Vol. 115, pp. 108909. Date of Electronic Publication: 2019 May 06.
Publication Year :
2019

Abstract

Ginsenoside metabolite compound-K (C-K), which is an active metabolite of ginsenoside in vivo, can produce anti-inflammatory affects by activating glucocorticoid receptors (GRs) to inhibit the expression of β-arrestin2. Studies have shown that C-K can inhibit the function of immune cells including macrophage polarization and phagocytosis. However, the mechanism by which C-K regulates macrophage polarization is currently unclear. Toll-like receptors (TLRs) are the pattern recognition receptors on the membrane of immune cells, with TLR4 being especially important in polarization of macrophages. The Gαi-mediated activation of nuclear factor-κB (NF-κB) by TLR4 promotes inflammation and phagocytosis in macrophages by increasing the proportion of type I phenotypic macrophages (M1). Whether C-K inhibits the signal transduction of TLR4-Gαi-NF-κB and how that effects macrophage polarization regulation in murine models of RA is not reported. The coupling of G proteins with receptors is regulated by β-arrestin2, but it has been unclear whether C-K modulates the TLR4 interaction with G proteins by inhibiting the expression of β-arrestin2. To explore these questions, the collagen-induced arthritis (CIA) mouse model was employed, and mice were treated with C-K (112 mg/kg/day). The results depict that C-K treatment inhibits macrophage phagocytosis and reduces the proportion of M1. C-K decreases the overexpressed β-arrestin2, Gαi, TLR4 and NF-κB in macrophages of CIA mice, while increasing the expression of Gαs. Furthermore, C-K promotes TLR4-Gαs coupling and inhibits TLR4-Gαi coupling through β-arrestin2 regulation in macrophages, leading to a decrease in the proportion of M1 to M2 macrophages and improved outcomes in CIA mice.<br /> (Copyright © 2019 The Authors. Published by Elsevier Masson SAS.. All rights reserved.)

Details

Language :
English
ISSN :
1950-6007
Volume :
115
Database :
MEDLINE
Journal :
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie
Publication Type :
Academic Journal
Accession number :
31071508
Full Text :
https://doi.org/10.1016/j.biopha.2019.108909