Back to Search Start Over

Human DNA Polymerase μ Can Use a Noncanonical Mechanism for Multiple Mn 2+ -Mediated Functions.

Authors :
Chang YK
Huang YP
Liu XX
Ko TP
Bessho Y
Kawano Y
Maestre-Reyna M
Wu WJ
Tsai MD
Source :
Journal of the American Chemical Society [J Am Chem Soc] 2019 May 29; Vol. 141 (21), pp. 8489-8502. Date of Electronic Publication: 2019 May 17.
Publication Year :
2019

Abstract

Recent research on the structure and mechanism of DNA polymerases has continued to generate fundamentally important features, including a noncanonical pathway involving "prebinding" of metal-bound dNTP (MdNTP) in the absence of DNA. While this noncanonical mechanism was shown to be a possible subset for African swine fever DNA polymerase X (Pol X) and human Pol λ, it remains unknown whether it could be the primary pathway for a DNA polymerase. Pol μ is a unique member of the X-family with multiple functions and with unusual Mn <superscript>2+</superscript> preference. Here we report that Pol μ not only prebinds MdNTP in a catalytically active conformation but also exerts a Mn <superscript>2+</superscript> over Mg <superscript>2+</superscript> preference at this early stage of catalysis, for various functions: incorporation of dNTP into a single nucleotide gapped DNA, incorporation of rNTP in the nonhomologous end joining (NHEJ) repair, incorporation of dNTP to an ssDNA, and incorporation of an 8-oxo-dGTP opposite template dA (mismatched) or dC (matched). The structural basis of this noncanonical mechanism and Mn <superscript>2+</superscript> over Mg <superscript>2+</superscript> preference in these functions was analyzed by solving 19 structures of prebinding binary complexes, precatalytic ternary complexes, and product complexes. The results suggest that the noncanonical pathway is functionally relevant for the multiple functions of Pol μ. Overall, this work provides the structural and mechanistic basis for the long-standing puzzle in the Mn <superscript>2+</superscript> preference of Pol μ and expands the landscape of the possible mechanisms of DNA polymerases to include both mechanistic pathways.

Details

Language :
English
ISSN :
1520-5126
Volume :
141
Issue :
21
Database :
MEDLINE
Journal :
Journal of the American Chemical Society
Publication Type :
Academic Journal
Accession number :
31067051
Full Text :
https://doi.org/10.1021/jacs.9b01741