Back to Search Start Over

Nitric oxide-releasing vascular grafts: A therapeutic strategy to promote angiogenic activity and endothelium regeneration.

Authors :
Kabirian F
Brouki Milan P
Zamanian A
Heying R
Mozafari M
Source :
Acta biomaterialia [Acta Biomater] 2019 Jul 01; Vol. 92, pp. 82-91. Date of Electronic Publication: 2019 May 03.
Publication Year :
2019

Abstract

Small-diameter vascular grafts (SDVGs) are associated with a high incidence of failure due to infection and obstruction. Although several vascular grafts are commercially available, specific anatomical differences of defect sites require patient-based design and fabrication. Design and fabrication of such custom-tailored grafts are possible with 3d-printing technology. The aim of this study is to develop 3d-printed SDVGs with a nitric oxide (NO)-releasing coating to improve the success rate of implantation. The SDVGs were printed from polylactic acid and coated with blending of 10 wt% S-nitroso-N-acetyl-D-penicillamine into the polymeric substrate consisting of poly (ethylene glycol) and polycaprolactone. Our results show that NO is released in the physiological range (0.5-4 × 10 <superscript>-10</superscript>  mol·cm <superscript>-2</superscript> ·min <superscript>-1</superscript> ) for 14 days and NO-releasing coating showed significant antibacterial potential against Gram-positive and Gram-negative strains. It was shown that both NO-releasing and control grafts are biocompatible in-vitro and in-vivo. Interestingly, the NO-releasing SDVGs dramatically enhanced ECs proliferation and significantly enhanced ECs migration in-vitro compared to control grafts. In addition, the NO-releasing SDVGs showed angiogenic potential in-vivo which can further prove the results of our in-vitro study. These findings are expected to facilitate tissue regeneration and integration of custom-made vascular implants with enhanced clinical success. STATEMENT OF SIGNIFICANCE: A series of 3d-printed small-diameter vascular grafts (SDVGs, <6 mm) with controlled release of nitric oxide (NO) were prepared to combine the advantages of 3D printing technology and NO-releasing systems. The resulting NO-releasing grafts were promisingly showing sustained NO release in the physiological range over a two weeks period. In addition to the evaluation of endothelial cell migration in-vitro, we implanted for the first time the NO-releasing vascular grafts in a chick chorioallantoic membrane (CAM) to investigate the effect of the prepared grafts on the angiogenesis in-vivo. The fabricated grafts also exhibited bactericidal properties which prevent the formation of a biofilm layer and can thereby enhance the chance of endothelialization on the surface. Taken together, the innovative combination of rapid and highly accurate 3d-printing technology as a patient-specific fabrication method with NO-releasing coating represents a promising approach to develop bactericidal SDVGs with improved endothelialization.<br /> (Copyright © 2019 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.)

Details

Language :
English
ISSN :
1878-7568
Volume :
92
Database :
MEDLINE
Journal :
Acta biomaterialia
Publication Type :
Academic Journal
Accession number :
31059835
Full Text :
https://doi.org/10.1016/j.actbio.2019.05.002