Back to Search Start Over

Genetic analysis of ATP7B in 102 south Indian families with Wilson disease.

Authors :
Singh N
Kallollimath P
Shah MH
Kapoor S
Bhat VK
Viswanathan LG
Nagappa M
Bindu PS
Taly AB
Sinha S
Kumar A
Source :
PloS one [PLoS One] 2019 May 06; Vol. 14 (5), pp. e0215779. Date of Electronic Publication: 2019 May 06 (Print Publication: 2019).
Publication Year :
2019

Abstract

Wilson disease (WD) is an autosomal recessive disorder, characterized by excessive deposition of copper in various parts of the body, mainly in the liver and brain. It is caused by mutations in ATP7B. We report here the genetic analysis of 102 WD families from a south Indian population. Thirty-six different ATP7B mutations, including 13 novel ones [p.Ala58fs*19, p.Lys74fs*9, p.Gln281*, p.Pro350fs*12, p.Ser481*, p.Leu735Arg, p.Val752Gly, p.Asn812fs*2, p.Val845Ala, p.His889Pro, p.Ile1184fs*1, p.Val1307Glu and p.Ala1339Pro], were identified in 76/102 families. Interestingly, the mutation analysis of affected individuals in two families identified two different homozygous mutations in each family, and thus each affected individual from these families harbored two mutations in each ATP7B allele. Of 36 mutations, 28 were missense, thus making them the most prevalent mutations identified in the present study. Nonsense, insertion and deletion represented 3/36, 2/36 and 3/36 mutations, respectively. The haplotype analysis suggested founder effects for all the 14 recurrent mutations. Our study thus expands the mutational landscape of ATP7B with a total number of 758 mutations. The mutations identified during the present study will facilitate carrier and pre-symptomatic detection, and prenatal genetic diagnosis in affected families.<br />Competing Interests: The authors have declared that no competing interests exist.

Details

Language :
English
ISSN :
1932-6203
Volume :
14
Issue :
5
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
31059521
Full Text :
https://doi.org/10.1371/journal.pone.0215779