Back to Search Start Over

Isolation of nanobodies against Xenopus embryonic antigens using immune and non-immune phage display libraries.

Authors :
Itoh K
Reis AH
Hayhurst A
Sokol SY
Source :
PloS one [PLoS One] 2019 May 02; Vol. 14 (5), pp. e0216083. Date of Electronic Publication: 2019 May 02 (Print Publication: 2019).
Publication Year :
2019

Abstract

The use of Xenopus laevis as a model for vertebrate developmental biology is limited by a lack of antibodies specific for embryonic antigens. This study evaluated the use of immune and non-immune phage display libraries for the isolation of single domain antibodies, or nanobodies, with specificities for Xenopus embryonic antigens. The immune nanobody library was derived from peripheral blood lymphocyte RNA obtained from a llama immunized with Xenopus gastrula homogenates. Screening this library by immunostaining of embryonic tissues with pooled periplasmic material and sib-selection led to the isolation of several monoclonal phages reactive with the cytoplasm and nuclei of gastrula cells. One antigen recognized by a group of nanobodies was identified using a reverse proteomics approach as nucleoplasmin, an abundant histone chaperone. As an alternative strategy, a semi-synthetic non-immune llama nanobody phage display library was panned on highly purified Xenopus proteins. This proof-of-principle approach isolated monoclonal nanobodies that specifically bind Nuclear distribution element-like 1 (Ndel1) in multiple immunoassays. Our results suggest that immune and non-immune phage display screens on crude and purified embryonic antigens can efficiently identify nanobodies useful to the Xenopus developmental biology community.<br />Competing Interests: The authors have declared that no competing interests exist.

Details

Language :
English
ISSN :
1932-6203
Volume :
14
Issue :
5
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
31048885
Full Text :
https://doi.org/10.1371/journal.pone.0216083