Back to Search Start Over

Exercise Alleviates Osteoporosis in Rats with Mild Chronic Kidney Disease by Decreasing Sclerostin Production.

Authors :
Liao HW
Huang TH
Chang YH
Liou HH
Chou YH
Sue YM
Hung PH
Chang YT
Ho PC
Tsai KJ
Source :
International journal of molecular sciences [Int J Mol Sci] 2019 Apr 25; Vol. 20 (8). Date of Electronic Publication: 2019 Apr 25.
Publication Year :
2019

Abstract

Chronic kidney disease-mineral bone disorder (CKD-MBD), comprising mineral, hormonal, and bone metabolic imbalance, is a major CKD-related issue; it causes osteoporosis prevalence in CKD patients. Osteocyte-derived sclerostin inhibits the osteogenic Wnt/β-catenin signaling pathway; its levels rise when kidney function declines. Exercise modulates the physiological functions of osteocytes, potentially altering sclerostin production. It may aid bone and mineral electrolyte homeostasis in CKD. Mild CKD was induced in rats by partial nephrectomy. They were divided into: sham (no CKD), CKD, and CKD + exercise (8 weeks of treadmill running) groups. Micro-CT scanning demonstrated that the CKD + exercise-group rats had a higher bone mineral density (BMD) of the spine and femoral metaphysis and higher femoral trabecular bone volume than the CKD-group rats. Bone formation rates were not significantly different. The CKD + exercise-group rats had lower serum sclerostin (157.1 ± 21.1 vs 309 ± 38.1 pg/mL, p < 0.05) and CTX-1 (bone resorption marker) levels. Immunohistochemistry revealed higher tibial β-catenin concentrations in the CKD + exercise-group rats. Serum FGF-23, intact parathyroid hormone (iPTH), alkaline phosphatase (ALP), calcium, and phosphate levels showed no significant differences between these groups. Thus, exercise improves BMD and bone microstructure in mild CKD by inhibiting sclerostin production, but does not alter serum minerals.

Details

Language :
English
ISSN :
1422-0067
Volume :
20
Issue :
8
Database :
MEDLINE
Journal :
International journal of molecular sciences
Publication Type :
Academic Journal
Accession number :
31027235
Full Text :
https://doi.org/10.3390/ijms20082044