Back to Search Start Over

Manifestation of Interactions of Nano-Silica in Silicone Rubber Investigated by Low-Frequency Dielectric Spectroscopy and Mechanical Tests.

Authors :
Wu C
Gao Y
Liang X
Gubanski SM
Wang Q
Bao W
Li S
Source :
Polymers [Polymers (Basel)] 2019 Apr 19; Vol. 11 (4). Date of Electronic Publication: 2019 Apr 19.
Publication Year :
2019

Abstract

Silicone rubber composites filled with nano-silica are currently widely used as high voltage insulating materials in power transmission and substation systems. We present a systematic study on the dielectric and mechanical performance of silicone rubber filled with surface modified and unmodified fumed nano-silica. The results indicate that the different interfaces between the silicone rubber and the two types of nano-silica introduce changes in their dielectric response when electrically stressed by a sinusoidal excitation in the frequency range of 10 <superscript>-4</superscript> -1 Hz. The responses of pure silicone rubber and the composite filled with modified silica can be characterized by a paralleled combination of Maxwell-Wagner-Sillars interface polarization and DC conduction. In contrast, the silicone rubber composite with the unmodified nano-silica exhibits a quasi-DC (Q-DC) transport process. The mechanical properties of the composites (represented by their stress-strain characteristics) reveal an improvement in the mechanical strength with increasing filler content. Moreover, the strain level of the composite with a modified filler is improved.

Details

Language :
English
ISSN :
2073-4360
Volume :
11
Issue :
4
Database :
MEDLINE
Journal :
Polymers
Publication Type :
Academic Journal
Accession number :
31010177
Full Text :
https://doi.org/10.3390/polym11040717