Back to Search
Start Over
A rapid monitoring of NDVI across the wheat growth cycle for grain yield prediction using a multi-spectral UAV platform.
- Source :
-
Plant science : an international journal of experimental plant biology [Plant Sci] 2019 May; Vol. 282, pp. 95-103. Date of Electronic Publication: 2018 Nov 01. - Publication Year :
- 2019
-
Abstract
- Wheat improvement programs require rapid assessment of large numbers of individual plots across multiple environments. Vegetation indices (VIs) that are mainly associated with yield and yield-related physiological traits, and rapid evaluation of canopy normalized difference vegetation index (NDVI) can assist in-season selection. Multi-spectral imagery using unmanned aerial vehicles (UAV) can readily assess the VIs traits at various crop growth stages. Thirty-two wheat cultivars and breeding lines grown in limited irrigation and full irrigation treatments were investigated to monitor NDVI across the growth cycle using a Sequoia sensor mounted on a UAV. Significant correlations ranging from R <superscript>2</superscript> = 0.38 to 0.90 were observed between NDVI detected from UAV and Greenseeker (GS) during stem elongation (SE) to late grain gilling (LGF) across the treatments. UAV-NDVI also had high heritabilities at SE (h <superscript>2</superscript> = 0.91), flowering (F)(h <superscript>2</superscript> = 0.95), EGF (h <superscript>2</superscript> = 0.79) and mid grain filling (MGF) (h <superscript>2</superscript> = 0.71) under the full irrigation treatment, and at booting (B) (h <superscript>2</superscript> = 0.89), EGF (h <superscript>2</superscript> = 0.75) in the limited irrigation treatment. UAV-NDVI explained significant variation in grain yield (GY) at EGF (R <superscript>2</superscript> = 0.86), MGF (R <superscript>2</superscript> = 0.83) and LGF (R <superscript>2</superscript> = 0.89) stages, and results were consistent with GS-NDVI. Higher correlations between UAV-NDVI and GY were observed under full irrigation at three different grain-filling stages (R <superscript>2</superscript> = 0.40, 0.49 and 0.45) than the limited irrigation treatment (R <superscript>2</superscript> = 0.08, 0.12 and 0.14) and GY was calculated to be 24.4% lower under limited irrigation conditions. Pearson correlations between UAV-NDVI and GY were also low ranging from r = 0.29 to 0.37 during grain-filling under limited irrigation but higher than GS-NDVI data. A similar pattern was observed for normalized difference red-edge (NDRE) and normalized green red difference index (NGRDI) when correlated with GY. Fresh biomass estimated at late flowering stage had significant correlations of r = 0.30 to 0.51 with UAV-NDVI at EGF. Some genotypes Nongda 211, Nongda 5181, Zhongmai 175 and Zhongmai 12 were identified as high yielding genotypes using NDVI during grain-filling. In conclusion, a multispectral sensor mounted on a UAV is a reliable high-throughput platform for NDVI measurement to predict biomass and GY and grain-filling stage seems the best period for selection.<br /> (Copyright © 2018 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1873-2259
- Volume :
- 282
- Database :
- MEDLINE
- Journal :
- Plant science : an international journal of experimental plant biology
- Publication Type :
- Academic Journal
- Accession number :
- 31003615
- Full Text :
- https://doi.org/10.1016/j.plantsci.2018.10.022