Back to Search
Start Over
SiMRiv: an R package for mechanistic simulation of individual, spatially-explicit multistate movements in rivers, heterogeneous and homogeneous spaces incorporating landscape bias.
- Source :
-
Movement ecology [Mov Ecol] 2019 Apr 02; Vol. 7, pp. 11. Date of Electronic Publication: 2019 Apr 02 (Print Publication: 2019). - Publication Year :
- 2019
-
Abstract
- Background: Lack of suitable analytical software and computational power constrains the comprehension of animal movement. In particular, we are aware of no tools allowing simulating spatially-explicit multistate Markovian movements constrained to linear features or conditioned by landscape heterogeneity, which hinders movement ecology research in linear/dendritic (e.g. river networks) and heterogeneous landscapes.SiMRiv is a novel, fast and intuitive R package we designed to fill such gap. It does so by allowing continuous-space mechanistic spatially-explicit simulation of multistate Markovian individual movements incorporating landscape bias on local behavior.<br />Results: We present SiMRiv and its main functionalities, illustrate its simulation capabilities and easy-of-use, and discuss its limitations and potential improvements. We further provide examples of use and a preliminary evaluation, using real and simulated data, of a parameter approximation experimental method. SiMRiv allowed us to generate increasingly complex movements of three theoretical species (aquatic, semiaquatic and terrestrial), showing the effects of input parameters and water-dependence on emerging movement patterns, and to parameterize a high-frequency simulation model from real, low-frequency movement (telemetry) data. Typical running times for conducting 1000 simulations with 10,000 steps each, of two-state movement trajectories in a river network, were of ca. 3 min in an Intel Core i7 CPU X990 @ 3.47 GHz.<br />Conclusions: SiMRiv allows simulation of movements constrained to linear habitats or conditioned by landscape heterogeneity, therefore enhancing the application of movement ecology to linear/dendritic and heterogeneous landscapes. Importantly, the software is flexible enough to be used in linear, heterogeneous, as well as homogeneous landscapes. Using the same software, algorithm and approach, one can therefore use SiMRiv to study the movement of different organisms in a variety of landscapes, facilitating comparative research.SiMRiv balances ease and speed with high realism of the movement models obtainable, constituting a fast, powerful, yet intuitive tool, which should contribute exploring several movement-related questions. Its applications depart from the generation of mechanistic null movement models, up to population level (e.g. landscape connectivity) analyses, holding potential for all fields requiring the simulation of random trajectories.<br />Competing Interests: LQ is an animal ecologist with expertise in stream and mammal ecology, and a strong interest in movement ecology and methods in ecology. MP is an ecologist, more specifically a botanist interested in community ecology, and a programmer. After noting the lack of software allowing to simulate trajectories in linear habitats (e.g. rivers), which is a pre-requisite to study the movement ecology of organisms, such as semiaquatic mammals, mostly moving within river networks, LQ sought to develop a (free) software to fill this gap. The meeting with MP provided the perfect opportunity. LQ and MP now hope that their software will contribute to the development of the movement ecology research, particularly in linear and heterogeneous landscapes, and seek feedbacks and collaborations to enhance software potentialities.Not applicable.Not applicable.The authors declare that they have no competing interests.Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Details
- Language :
- English
- ISSN :
- 2051-3933
- Volume :
- 7
- Database :
- MEDLINE
- Journal :
- Movement ecology
- Publication Type :
- Academic Journal
- Accession number :
- 30984401
- Full Text :
- https://doi.org/10.1186/s40462-019-0154-8