Back to Search Start Over

Novel Curcumin Inspired Antineoplastic 1-Sulfonyl-4-Piperidones: Design, Synthesis and Molecular Modeling Studies.

Authors :
Fawzy NG
Panda SS
Fayad W
El-Manawaty MA
Srour AM
Girgis AS
Source :
Anti-cancer agents in medicinal chemistry [Anticancer Agents Med Chem] 2019; Vol. 19 (8), pp. 1069-1078.
Publication Year :
2019

Abstract

Background: Curcumin is a well-known example of plant origin exhibiting promising diverse biological properties such as, anti-inflammatory and antitumor as well as poor pharmacokinetic/pharmacodynamic properties. This is why effective agents based on its chemical scaffold were explored.<br />Methods: A set of 3,5-bis(ylidene)-1-(alkylsulfonyl)piperidin-4-ones were synthesized in excellent yield (80- 96%) through dehydrohalogenation reaction of 3,5-bis(ylidene)-4-piperidinones with the corresponding alkane sulfonyl chloride in the presence of triethylamine. Antiproliferative properties of the synthesized compounds (dienone/curcumin inspired analogues) were studied by the standard MTT technique.<br />Results: Most of the synthesized compounds revealed antiproliferative properties against HCT116 (colon) and A431 (skin/squamous) cancer cell lines with IC50 values at sub-micromolar level. Compound 36 also exhibited potency against MCF7 (breast) and A549 (lung) cancer cell lines (IC50 = 2.23, 4.27µM, respectively) higher than that of the reference standards (IC50 = 3.15, 5.93µM for 5-fluorouracil and doxorubicin against MCF7 and A549 cell lines, respectively). Cytotoxic properties of the synthesized compounds against non-cancer RPE1 cell line supported the safety profile of the effective agents against normal cells. Molecular modeling (3Dpharmacophore and 2D-QSAR) studies validated the observed bio-properties and explained the parameters governing activity. Inhibitory properties of compounds 27 and 29 (representative examples of the promising antiproliferative agents synthesized) supported their mode of action against topoisomerase IIα.<br />Conclusion: The synthesized scaffold is a promising antitumor agent (with special selectivity against colon and skin/squamous cancer cell lines) so, it can be considered for further investigation and development of highly effective hits/leads based on the computational models obtained.<br /> (Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.net.)

Details

Language :
English
ISSN :
1875-5992
Volume :
19
Issue :
8
Database :
MEDLINE
Journal :
Anti-cancer agents in medicinal chemistry
Publication Type :
Academic Journal
Accession number :
30961509
Full Text :
https://doi.org/10.2174/1871520619666190408131639