Back to Search Start Over

Foaming Behavior and Microcellular Morphologies of Incompatible SAN/CPE Blends with Supercritical Carbon Dioxide as a Physical Blowing Agent.

Authors :
Zhang HC
Yu CN
Liang Y
Lin GX
Meng C
Source :
Polymers [Polymers (Basel)] 2019 Jan 08; Vol. 11 (1). Date of Electronic Publication: 2019 Jan 08.
Publication Year :
2019

Abstract

The foaming process and cellular morphologies of poly(styrene-co-acrylonitrile) (SAN)/chlorinated polyethylene (CPE) blends with supercritical carbon dioxide (scCO₂) as a blowing agent were investigated in this study. As compared to pure SAN foam in the same batch, the foamed blends with various CPE elastomer content had smaller average pore size and larger cell density. This is probably related to the inhibition of bubble growth by elastomer, resulting in poor melt flowability and strong viscoelasticity, and the efficient bubble heterogeneous nucleation caused by numerous phase interfaces inside the incompletely compatible blend system. In addition, many tiny interconnected holes through the pore walls were formed to connect adjacent micropores in foamed blend samples. The formation mechanism of such interconnected pores is probably due to the fracture of stretched melt around the bubble from phase interfaces with weak interactions. These facts suggest an effective path to control pore size, cell density and even interconnected pores of blend foams depends on the compatibility of the blend system and difference in foamability of individual components in supercritical CO₂.

Details

Language :
English
ISSN :
2073-4360
Volume :
11
Issue :
1
Database :
MEDLINE
Journal :
Polymers
Publication Type :
Academic Journal
Accession number :
30960075
Full Text :
https://doi.org/10.3390/polym11010089