Back to Search
Start Over
Blockade of Lactate Dehydrogenase-A (LDH-A) Improves Efficacy of Anti-Programmed Cell Death-1 (PD-1) Therapy in Melanoma.
- Source :
-
Cancers [Cancers (Basel)] 2019 Mar 29; Vol. 11 (4). Date of Electronic Publication: 2019 Mar 29. - Publication Year :
- 2019
-
Abstract
- Immunotherapy is a curable treatment for certain cancers, but it is still only effective in a small subset of patients. We have recently reported that programmed cell death protein-1 (PD-1) ligand (PD-L1) expression is regulated by lactate present at high levels in the tumor microenvironment (TME). We hypothesized that the efficacy of anti-PD-1 treatment can be improved by blocking the lactate-generating enzyme, lactate dehydrogenase-A (LDH-A). Anti-PD-1 treatment of mice harboring LDH-A deficient B16-F10 melanoma tumors led to an increase in anti-tumor immune responses compared to mice implanted with tumors expressing LDH-A. Specifically, we observed heightened infiltration of natural killer (NK) cells and CD8⁺ cytotoxic T cells in the LDH-A deficient tumors. These infiltrated cytotoxic cells had an elevated production of interferon-γ (IFN-γ) and granzyme B. Mechanistically, CD8⁺ T cells isolated from the TME of LDH-A deficient B16-F10 melanoma tumors and treated with anti-PD-1 showed enhanced mitochondrial activity and increased reactive oxygen species (ROS) levels. Moreover, infiltration of T regulatory (Treg) cells was diminished in LDH-A deficient tumors treated with anti-PD-1. These altered immune cell profiles were clinically relevant as they were accompanied by significantly reduced tumor growth. Our study suggests that blocking LDH-A in the tumor might improve the efficacy of anti-PD-1 therapy.<br />Competing Interests: The authors declare no conflict of interest. The funders had no role in the design of the study; in the collection, analyses, or interpretation of data; in the writing of the manuscript, or in the decision to publish the results.
Details
- Language :
- English
- ISSN :
- 2072-6694
- Volume :
- 11
- Issue :
- 4
- Database :
- MEDLINE
- Journal :
- Cancers
- Publication Type :
- Academic Journal
- Accession number :
- 30934955
- Full Text :
- https://doi.org/10.3390/cancers11040450