Back to Search Start Over

Didymin, a dietary citrus flavonoid exhibits anti-diabetic complications and promotes glucose uptake through the activation of PI3K/Akt signaling pathway in insulin-resistant HepG2 cells.

Authors :
Ali MY
Zaib S
Rahman MM
Jannat S
Iqbal J
Park SK
Chang MS
Source :
Chemico-biological interactions [Chem Biol Interact] 2019 May 25; Vol. 305, pp. 180-194. Date of Electronic Publication: 2019 Mar 27.
Publication Year :
2019

Abstract

Didymin is a naturally occurring orally active flavonoid glycoside (isosakuranetin 7-O-rutinoside) found in various citrus fruits, which has been previously reported to possess a wide variety of pharmacological activities including anticancer, antioxidant, antinociceptive, neuroprotective, hepatoprotective, inflammatory, and cardiovascular. However, there have not been any reports concerning its anti-diabetic potential until now. Therefore, we evaluated the anti-diabetic potential of didymin via inhibition of α-glucosidase, protein tyrosine phosphatase 1B (PTP1B), rat lens aldose reductase (RLAR), human recombinant AR (HRAR), and advanced glycation end-product (AGE) formation inhibitory assays. Didymin strongly inhibited PTP1B, α-glucosidase, HRAR, RLAR, and AGE in the corresponding assays. Kinetic study revealed that didymin exhibited a mixed type inhibition against α-glucosidase and HRAR, while it competitively inhibited PTP1B and RLAR. Docking simulations of didymin demonstrated negative binding energies and close proximity to residues in the binding pocket of HRAR, RLAR, PTP1B and α-glucosidase, indicating that didymin have high affinity and tight binding capacity towards the active site of these enzymes. Furthermore, we also examined the molecular mechanisms underlying the anti-diabetic effects of didymin in insulin-resistant HepG2 cells which significantly increased glucose uptake and decreased the expression of PTP1B in insulin-resistant HepG2 cells. In addition, didymin activated insulin receptor substrate (IRS)-1 by increasing phosphorylation at tyrosine 895 and enhanced the phosphorylations of phosphoinositide 3-kinase (PI3K), Akt, and glycogen synthasekinase-3(GSK-3). Interestingly, didymin reduced the expression of phosphoenolpyruvate carboxykinase and glucose 6-phosphatase, two key enzymes involved in the gluconeogenesis and leading to a diminished glucose production. The results of the present study clearly demonstrated that didymin will be useful for developing multiple target-oriented therapeutic modalities for treatment of diabetes, and diabetes-associated complications.<br /> (© 2019 Published by Elsevier B.V.)

Details

Language :
English
ISSN :
1872-7786
Volume :
305
Database :
MEDLINE
Journal :
Chemico-biological interactions
Publication Type :
Academic Journal
Accession number :
30928401
Full Text :
https://doi.org/10.1016/j.cbi.2019.03.018