Back to Search Start Over

Green, economic, and partially biodegradable wood plastic composites via enzymatic surface modification of lignocellulosic fibers.

Authors :
Youssef AM
Hasanin MS
Abd El-Aziz ME
Darwesh OM
Source :
Heliyon [Heliyon] 2019 Mar 14; Vol. 5 (3), pp. e01332. Date of Electronic Publication: 2019 Mar 14 (Print Publication: 2019).
Publication Year :
2019

Abstract

Lignocellulosic fibers, which obtained from Citrus trees trimmings, were modified with Aspergillus flavus (EGYPTA5) enzymes. The non-modified and the modified lignocellulosic fibers were used with low density polyethylene (LDPE) by melt blending brabender method at 170 °C with different ratio (5, 10 and 20 wt%) to obtain wood plastic composites (WPC). The prepared samples were characterized using Fourier-transformed infrared (FT-IR), Scan Electron Microscope (SEM), and Water vapor transmission rate (WVTR) as well as, the mechanical, thermal, biodegradability and swelling properties were examined. The fabricated WPC displayed good mechanical and thermal properties compare with pure LDPE. Also, the WVTR was enhanced by the addition of modified lignocellulosic fibers over the unmodified one. Moreover, the enzymes assay such as cellulase and lignin peroxidase enzymes were estimated and confirming the growing of fungi on the lignocellulosic fiber in solid state fermentation condition to improve lignin peroxidase production and eliminate cellulose enzymes. The fabricated WPC can be used in different environmental application such as packaging system, that it will be green, economic, and partially biodegradable.

Details

Language :
English
ISSN :
2405-8440
Volume :
5
Issue :
3
Database :
MEDLINE
Journal :
Heliyon
Publication Type :
Academic Journal
Accession number :
30923764
Full Text :
https://doi.org/10.1016/j.heliyon.2019.e01332