Back to Search Start Over

Combined effects of ambient particulate matter exposure and a high-fat diet on oxidative stress and steatohepatitis in mice.

Authors :
Ding S
Yuan C
Si B
Wang M
Da S
Bai L
Wu W
Source :
PloS one [PLoS One] 2019 Mar 28; Vol. 14 (3), pp. e0214680. Date of Electronic Publication: 2019 Mar 28 (Print Publication: 2019).
Publication Year :
2019

Abstract

Background: Chronic exposure to ambient particulate matter with aerodynamic diameters < 2.5 (PM2.5) induces oxidative injury and liver pathogenesis. The present study assessed the effect and mechanism of long-term, real-world airborne particulate matter (PM) exposure on oxidative stress and hepatic steatosis in the context of a standard chow diet (STD) and a high-fat diet (HFD); the study further explored whether a combination of PM exposure and HFD treatment exacerbates the adverse effects in mice.<br />Methods: C57BL/6J mice fed with STD or HFD (41.26% kcal fat) were exposed to PM or filtered air (FA) for 5 months. Lipid metabolism, oxidative stress and liver pathogenesis were evaluated. Real-time PCR and western blotting were performed to determine gene expression and molecular signal transduction in liver.<br />Results: Chronic airborne PM exposure impaired oxidative homeostasis, caused inflammation and induced hepatic steatosis in mice. Further investigation found that exposure to real-world PM increased the expression of hepatic Nrf2 and Nrf2-regulated antioxidant enzyme gene. The increased protein expression of the sterol regulatory element binding protein-1c (SREBP-1c) and fatty acid synthase (FAS) in the liver were also observed in PM-exposed groups. Furthermore, the combination of PM exposure and HFD treatment caused a synergistic effect on the changes of lipid accumulation oxidative stress, inflammation in the mouse liver.<br />Conclusions: Through in vivo study, we reveal that the combination of real-world ambient PM exposure and HFD treatment aggravates hepatic lipid metabolism disorders, inflammation and oxidative stress. PM exposure may accelerate the progression to non-alcoholic steatohepatitis by regulating SREBP-1c/FAS regulatory axis.<br />Competing Interests: The authors have declared that no competing interests exist.

Details

Language :
English
ISSN :
1932-6203
Volume :
14
Issue :
3
Database :
MEDLINE
Journal :
PloS one
Publication Type :
Academic Journal
Accession number :
30921449
Full Text :
https://doi.org/10.1371/journal.pone.0214680