Back to Search Start Over

Genome-wide characterization and expression of the elongation of very long chain fatty acid (Elovl) genes and fatty acid profiles in the alga (Tetraselmis suecica) fed marine rotifer Brachionus koreanus.

Authors :
Lee MC
Park JC
Yoon DS
Choi H
Kim HJ
Shin KH
Hagiwara A
Han J
Park HG
Lee JS
Source :
Comparative biochemistry and physiology. Part D, Genomics & proteomics [Comp Biochem Physiol Part D Genomics Proteomics] 2019 Jun; Vol. 30, pp. 179-185. Date of Electronic Publication: 2019 Mar 02.
Publication Year :
2019

Abstract

To understand the lipid metabolism in invertebrate species, identification of the fatty acid (FA) synthesis gene families in invertebrate species is important, since some FA are unable to be synthesized in the organisms by themselves. In the study, to identify the elongation of very long chain fatty acid (Elovl) genes in the marine rotifer Brachionus koreanus, the genome-wide identification and phylogenetic analysis of Elovl genes have been conducted with the expression profile of Elovl genes on the alga Tetraslemis suecica-fed B. koreanus. A total 10 Elovl genes have been identified from the genome of B. koreanus, with conserved HXXHH motif. Synteny analysis showed that tandem duplication event has occurred (Elovl3/6a and b, Elovl9a and b, and Elovl9c and d) in the ancestor. Phylogenetic analysis have clearly revealed that Brachionus spp. has only 2/5 and 3/6 subfamilies, and two novel Elovl classes have been revealed, namely Elovl9 and 10. Transcriptional data showed that the 10 Elovl genes were differently expressed and their expression could be regulated by feeding the alga T. suecica. From fatty acid (FA) profile data of the alga Tetraslemis suecica-fed B. koreanus, we revealed that the marine rotifer B. koreanus may synthesize very long chain fatty acid (VLCFA; >22 carbons) by themselves, as VLCFA was hardly detected in the alga T. suecica. The study provides a better understanding of FA metabolism of the marine rotifer B. koreanus after feeding the T. suecica.<br /> (Copyright © 2019 Elsevier Inc. All rights reserved.)

Details

Language :
English
ISSN :
1878-0407
Volume :
30
Database :
MEDLINE
Journal :
Comparative biochemistry and physiology. Part D, Genomics & proteomics
Publication Type :
Academic Journal
Accession number :
30884356
Full Text :
https://doi.org/10.1016/j.cbd.2019.03.001