Back to Search
Start Over
Identification of circadian rhythms in Nannochloropsis species using bioluminescence reporter lines.
- Source :
-
The Plant journal : for cell and molecular biology [Plant J] 2019 Jul; Vol. 99 (1), pp. 112-127. Date of Electronic Publication: 2019 Apr 19. - Publication Year :
- 2019
-
Abstract
- Circadian clocks allow organisms to predict environmental changes caused by the rotation of the Earth. Although circadian rhythms are widespread among different taxa, the core components of circadian oscillators are not conserved and differ between bacteria, plants, animals and fungi. Stramenopiles are a large group of organisms in which circadian rhythms have been only poorly characterized and no clock components have been identified. We have investigated cell division and molecular rhythms in Nannochloropsis species. In the four strains tested, cell division occurred principally during the night period under diel conditions; however, these rhythms damped within 2-3 days after transfer to constant light. We developed firefly luciferase reporters for the long-term monitoring of in vivo transcriptional rhythms in two Nannochlropsis species, Nannochloropsis oceanica CCMP1779 and Nannochloropsis salina CCMP537. The reporter lines express anticipatory behavior under light/dark cycles and free-running bioluminescence rhythms with periods of ~21-31 h that damped within ~3-4 days under constant light. Using different entrainment regimes, we demonstrate that these rhythms are modulated by a circadian-type oscillator. In addition, the phase of free-running luminescence rhythms can be modulated pharmacologically using a CK1 ε/δ inhibitor, suggesting a role of this kinase in the Nannochloropsis clock. Together with the molecular and genomic tools available for Nannochloropsis species, these reporter lines represent an excellent system for future studies on the molecular mechanisms of stramenopile circadian oscillators.<br /> (© 2019 The Authors The Plant Journal © 2019 John Wiley & Sons Ltd.)
Details
- Language :
- English
- ISSN :
- 1365-313X
- Volume :
- 99
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- The Plant journal : for cell and molecular biology
- Publication Type :
- Academic Journal
- Accession number :
- 30883973
- Full Text :
- https://doi.org/10.1111/tpj.14314