Back to Search
Start Over
Wireless, battery-free optoelectronic systems as subdermal implants for local tissue oximetry.
- Source :
-
Science advances [Sci Adv] 2019 Mar 08; Vol. 5 (3), pp. eaaw0873. Date of Electronic Publication: 2019 Mar 08 (Print Publication: 2019). - Publication Year :
- 2019
-
Abstract
- Monitoring regional tissue oxygenation in animal models and potentially in human subjects can yield insights into the underlying mechanisms of local O <subscript>2</subscript> -mediated physiological processes and provide diagnostic and therapeutic guidance for relevant disease states. Existing technologies for tissue oxygenation assessments involve some combination of disadvantages in requirements for physical tethers, anesthetics, and special apparatus, often with confounding effects on the natural behaviors of test subjects. This work introduces an entirely wireless and fully implantable platform incorporating (i) microscale optoelectronics for continuous sensing of local hemoglobin dynamics and (ii) advanced designs in continuous, wireless power delivery and data output for tether-free operation. These features support in vivo, highly localized tissue oximetry at sites of interest, including deep brain regions of mice, on untethered, awake animal models. The results create many opportunities for studying various O <subscript>2</subscript> -mediated processes in naturally behaving subjects, with implications in biomedical research and clinical practice.
- Subjects :
- Animals
Blood Substitutes analysis
Corpus Striatum metabolism
Corpus Striatum surgery
Hypoxia metabolism
Mice
Mice, Inbred C57BL
Models, Animal
Oxygen analysis
Rats
Rats, Sprague-Dawley
Smart Materials
Electric Power Supplies
Oximetry instrumentation
Prostheses and Implants
Wireless Technology instrumentation
Subjects
Details
- Language :
- English
- ISSN :
- 2375-2548
- Volume :
- 5
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- Science advances
- Publication Type :
- Academic Journal
- Accession number :
- 30873435
- Full Text :
- https://doi.org/10.1126/sciadv.aaw0873