Back to Search
Start Over
Impact of obesity on breast cancer recurrence and minimal residual disease.
- Source :
-
Breast cancer research : BCR [Breast Cancer Res] 2019 Mar 13; Vol. 21 (1), pp. 41. Date of Electronic Publication: 2019 Mar 13. - Publication Year :
- 2019
-
Abstract
- Background: Obesity is associated with an increased risk of breast cancer recurrence and cancer death. Recurrent cancers arise from the pool of residual tumor cells, or minimal residual disease (MRD), that survives primary treatment and persists in the host. Whether the association of obesity with recurrence risk is causal is unknown, and the impact of obesity on MRD and breast cancer recurrence has not been reported in humans or in animal models.<br />Methods: Doxycycline-inducible primary mammary tumors were generated in intact MMTV-rtTA;TetO-HER2/neu (MTB/TAN) mice or orthotopic recipients fed a high-fat diet (HFD; 60% kcal from fat) or a control low-fat diet (LFD; 10% kcal from fat). Following oncogene downregulation and tumor regression, mice were followed for clinical recurrence. Body weight was measured twice weekly and used to segregate HFD mice into obese (i.e., responders) and lean (i.e., nonresponders) study arms, and obesity was correlated with body fat percentage, glucose tolerance (measured using intraperitoneal glucose tolerance tests), serum biomarkers (measured by enzyme-linked immunosorbent assay), and tissue transcriptomics (assessed by RNA sequencing). MRD was quantified by droplet digital PCR.<br />Results: HFD-Obese mice weighed significantly more than HFD-Lean and LFD control mice (p < 0.001) and had increased body fat percentage (p < 0.001). Obese mice exhibited fasting hyperglycemia, hyperinsulinemia, and impaired glucose tolerance, as well as decreased serum levels of adiponectin and increased levels of leptin, resistin, and insulin-like growth factor 1. Tumor recurrence was accelerated in HFD-Obese mice compared with HFD-Lean and LFD control mice (median relapse-free survival 53.0 days vs. 87.0 days vs. 80.0 days, log-rank p < 0.001; HFD-Obese compared with HFD-Lean HR 2.52, 95% CI 1.52-4.16; HFD-Obese compared with LFD HR 2.27, 95% CI 1.42-3.63). HFD-Obese mice harbored a significantly greater number of residual tumor cells than HFD-Lean and LFD mice (12,550 ± 991 vs. 7339 ± 2182 vs. 4793 ± 1618 cells, p < 0.001).<br />Conclusion: These studies provide a genetically engineered mouse model for study of the association of diet-induced obesity with breast cancer recurrence. They demonstrate that this model recapitulates physiological changes characteristic of obese patients, establish that the association between obesity and recurrence risk is causal in nature, and suggest that obesity is associated with the increased survival and persistence of residual tumor cells.
- Subjects :
- Animals
Body Mass Index
Body Weight
Breast Neoplasms pathology
Cell Line, Tumor transplantation
Datasets as Topic
Diet, High-Fat adverse effects
Disease-Free Survival
Female
Humans
Mammary Neoplasms, Experimental genetics
Mammary Neoplasms, Experimental mortality
Mice, Obese
Mice, Transgenic
Neoplasm Recurrence, Local mortality
Neoplasm, Residual
Obesity etiology
Receptor, ErbB-2 genetics
Survival Analysis
Breast Neoplasms mortality
Mammary Neoplasms, Experimental pathology
Neoplasm Recurrence, Local pathology
Obesity pathology
Subjects
Details
- Language :
- English
- ISSN :
- 1465-542X
- Volume :
- 21
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- Breast cancer research : BCR
- Publication Type :
- Academic Journal
- Accession number :
- 30867005
- Full Text :
- https://doi.org/10.1186/s13058-018-1087-7