Back to Search
Start Over
Class I histone deacetylase inhibitor MS-275 attenuates vasoconstriction and inflammation in angiotensin II-induced hypertension.
- Source :
-
PloS one [PLoS One] 2019 Mar 04; Vol. 14 (3), pp. e0213186. Date of Electronic Publication: 2019 Mar 04 (Print Publication: 2019). - Publication Year :
- 2019
-
Abstract
- Objective: Non-selective histone deacetylase (HDAC) inhibitors are known to improve hypertension. Here, we investigated the therapeutic effect and regulatory mechanism of the class I HDAC selective inhibitors, MS-275 and RGFP966, in angiotensin (Ang) II-induced hypertensive mice.<br />Methods and Results: MS-275 inhibited the activity of HDAC1, HDAC2, and HDAC3, while RGFP966 weakly inhibited that of HDAC3 in a cell-free system. MS-275 and RGFP966 treatment reduced systolic blood pressure and thickness of the aorta wall in Ang II-induced hypertensive mice. MS-275 treatment reduced aorta collagen deposition, as determined by Masson's trichrome staining. MS-275 decreased the components of the renin angiotensin system and increased vascular relaxation of rat aortic rings via the nitric oxide (NO) pathway. NO levels reduced by Ang II were restored by MS-275 treatment in vascular smooth muscle cells (VSMCs). However, MS-275 dose (3 mg·kg-1·day-1) was not enough to induce NO production in vivo. In addition, MS-275 did not prevent endothelial nitric oxide synthase (eNOS) uncoupling in the aorta of Ang II-induced mice. Treatment with MS-275 failed to inhibit Ang II-induced expression of NADPH oxidase (Nox)1, Nox2, and p47phox. MS-275 treatment reduced proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and monocyte chemoattractant protein (MCP)-1, as well as adhesion molecules. Histological analysis showed that Ang II-induced macrophage infiltration was reduced by MS-275 and RGFP966 administration.<br />Conclusions: Our results indicate that class I HDAC selective inhibitors may be good therapeutic agents for the treatment of hypertension through the regulation of vascular remodeling and vasoconstriction, as well as inflammation.<br />Competing Interests: The authors have declared that no competing interests exist.
- Subjects :
- Adaptor Proteins, Signal Transducing genetics
Adaptor Proteins, Signal Transducing metabolism
Animals
Aorta drug effects
Aorta metabolism
Benzamides therapeutic use
Blood Pressure drug effects
Cell Adhesion Molecules metabolism
Histone Deacetylase Inhibitors therapeutic use
Hypertension chemically induced
Hypertension drug therapy
Inflammation prevention & control
Macrophages immunology
Male
Mice
Myocytes, Smooth Muscle cytology
Myocytes, Smooth Muscle drug effects
Myocytes, Smooth Muscle metabolism
NADPH Oxidase 1 metabolism
Nitric Oxide metabolism
Pyridines therapeutic use
Renin-Angiotensin System drug effects
Tumor Necrosis Factor-alpha metabolism
Up-Regulation drug effects
Angiotensin II pharmacology
Benzamides pharmacology
Histone Deacetylase Inhibitors pharmacology
Hypertension pathology
Pyridines pharmacology
Vasoconstriction drug effects
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 14
- Issue :
- 3
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 30830950
- Full Text :
- https://doi.org/10.1371/journal.pone.0213186