Back to Search Start Over

Posthemorrhagic hydrocephalus development after germinal matrix hemorrhage: Established mechanisms and proposed pathways.

Authors :
Klebe D
McBride D
Krafft PR
Flores JJ
Tang J
Zhang JH
Source :
Journal of neuroscience research [J Neurosci Res] 2020 Jan; Vol. 98 (1), pp. 105-120. Date of Electronic Publication: 2019 Feb 21.
Publication Year :
2020

Abstract

In addition to being the leading cause of morbidity and mortality in premature infants, germinal matrix hemorrhage (GMH) is also the leading cause of acquired infantile hydrocephalus. The pathophysiology of posthemorrhagic hydrocephalus (PHH) development after GMH is complex and vaguely understood, although evidence suggests fibrosis and gliosis in the periventricular and subarachnoid spaces disrupts normal cerebrospinal fluid (CSF) dynamics. Theories explaining general hydrocephalus etiology have substantially evolved from the original bulk flow theory developed by Dr. Dandy over a century ago. Current clinical and experimental evidence supports a new hydrodynamic theory for hydrocephalus development involving redistribution of vascular pulsations and disruption of Starling forces in the brain microcirculation. In this review, we discuss CSF flow dynamics, history and development of theoretical hydrocephalus pathophysiology, and GMH epidemiology and etiology as it relates to PHH development. We highlight known mechanisms and propose new avenues that will further elucidate GMH pathophysiology, specifically related to hydrocephalus.<br /> (© 2019 Wiley Periodicals, Inc.)

Details

Language :
English
ISSN :
1097-4547
Volume :
98
Issue :
1
Database :
MEDLINE
Journal :
Journal of neuroscience research
Publication Type :
Academic Journal
Accession number :
30793349
Full Text :
https://doi.org/10.1002/jnr.24394