Back to Search
Start Over
Parameter balancing: consistent parameter sets for kinetic metabolic models.
- Source :
-
Bioinformatics (Oxford, England) [Bioinformatics] 2019 Oct 01; Vol. 35 (19), pp. 3857-3858. - Publication Year :
- 2019
-
Abstract
- Summary: Measured kinetic constants are key input data for metabolic models, but they are often uncertain, inconsistent and incomplete. Parameter balancing translates such data into complete and consistent parameter sets while accounting for predefined ranges and physical constraints. Based on Bayesian regression, it determines a most plausible parameter set as well as uncertainty ranges for all model parameters. Our tools for parameter balancing support standard model and data formats and enable an easy customization of prior distributions and constraints for biochemical constants. Modellers can balance kinetic constants, thermodynamic data and metabolomic data to obtain thermodynamically consistent metabolic states that comply with user-defined flux directions.<br />Availability and Implementation: An online tool for parameter balancing, a stand-alone Python command line tool, a Python package and a Matlab toolbox (which uses the CPLEX solver) are freely available at www.parameterbalancing.net.<br /> (© The Author(s) 2019. Published by Oxford University Press.)
- Subjects :
- Bayes Theorem
Kinetics
Metabolomics
Models, Biological
Thermodynamics
Software
Subjects
Details
- Language :
- English
- ISSN :
- 1367-4811
- Volume :
- 35
- Issue :
- 19
- Database :
- MEDLINE
- Journal :
- Bioinformatics (Oxford, England)
- Publication Type :
- Academic Journal
- Accession number :
- 30793200
- Full Text :
- https://doi.org/10.1093/bioinformatics/btz129