Back to Search Start Over

A single-cell molecular map of mouse gastrulation and early organogenesis.

Authors :
Pijuan-Sala B
Griffiths JA
Guibentif C
Hiscock TW
Jawaid W
Calero-Nieto FJ
Mulas C
Ibarra-Soria X
Tyser RCV
Ho DLL
Reik W
Srinivas S
Simons BD
Nichols J
Marioni JC
Göttgens B
Source :
Nature [Nature] 2019 Feb; Vol. 566 (7745), pp. 490-495. Date of Electronic Publication: 2019 Feb 20.
Publication Year :
2019

Abstract

Across the animal kingdom, gastrulation represents a key developmental event during which embryonic pluripotent cells diversify into lineage-specific precursors that will generate the adult organism. Here we report the transcriptional profiles of 116,312 single cells from mouse embryos collected at nine sequential time points ranging from 6.5 to 8.5 days post-fertilization. We construct a molecular map of cellular differentiation from pluripotency towards all major embryonic lineages, and explore the complex events involved in the convergence of visceral and primitive streak-derived endoderm. Furthermore, we use single-cell profiling to show that Tal1 <superscript>-/-</superscript> chimeric embryos display defects in early mesoderm diversification, and we thus demonstrate how combining temporal and transcriptional information can illuminate gene function. Together, this comprehensive delineation of mammalian cell differentiation trajectories in vivo represents a baseline for understanding the effects of gene mutations during development, as well as a roadmap for the optimization of in vitro differentiation protocols for regenerative medicine.

Details

Language :
English
ISSN :
1476-4687
Volume :
566
Issue :
7745
Database :
MEDLINE
Journal :
Nature
Publication Type :
Academic Journal
Accession number :
30787436
Full Text :
https://doi.org/10.1038/s41586-019-0933-9