Back to Search Start Over

Defining a murine ovarian cancer model for the evaluation of conditionally-replicative adenovirus (CRAd) virotherapy agents.

Authors :
González-Pastor R
Ashshi AM
El-Shemi AG
Dmitriev IP
Kashentseva EA
Lu ZH
Goedegebuure SP
Podhajcer OL
Curiel DT
Source :
Journal of ovarian research [J Ovarian Res] 2019 Feb 15; Vol. 12 (1), pp. 18. Date of Electronic Publication: 2019 Feb 15.
Publication Year :
2019

Abstract

Background: Virotherapy represents a promising approach for ovarian cancer. In this regard, conditionally replicative adenovirus (CRAd) has been translated to the context of human clinical trials. Advanced design of CRAds has sought to exploit their capacity to induce anti-tumor immunization by configuring immunoregulatory molecule within the CRAd genome. Unfortunately, employed murine xenograft models do not allow full analysis of the immunologic activity linked to CRAd replication.<br />Results: We developed CRAds based on the Ad5/3-Delta24 design encoding cytokines. Whereas the encoded cytokines did not impact adversely CRAd-induced oncolysis in vitro, no gain in anti-tumor activity was noted in immune-incompetent murine models with human ovarian cancer xenografts. On this basis, we explored the potential utility of the murine syngeneic immunocompetent ID8 ovarian cancer model. Of note, the ID8 murine ovarian cancer cell lines exhibited CRAd-mediated cytolysis. The use of this model now enables the rational design of oncolytic agents to achieve anti-tumor immunotherapy.<br />Conclusions: Limits of widely employed murine xenograft models of ovarian cancer limit their utility for design and study of armed CRAd virotherapy agents. The ID8 model exhibited CRAd-induced oncolysis. This feature predicate its potential utility for the study of CRAd-based virotherapy agents.

Details

Language :
English
ISSN :
1757-2215
Volume :
12
Issue :
1
Database :
MEDLINE
Journal :
Journal of ovarian research
Publication Type :
Academic Journal
Accession number :
30767772
Full Text :
https://doi.org/10.1186/s13048-019-0493-5