Back to Search
Start Over
Energy auditing and carbon footprint under long-term conservation agriculture-based intensive maize systems with diverse inorganic nitrogen management options.
- Source :
-
The Science of the total environment [Sci Total Environ] 2019 May 10; Vol. 664, pp. 659-668. Date of Electronic Publication: 2019 Feb 01. - Publication Year :
- 2019
-
Abstract
- A greater energy grant in diesel-fed machinery driven farming substantiate the higher GHGs emission along with improper input (fertilizer, pesticide and irrigation) use and intensive soil management. Practicing conservation tillage, residue retention and diversified crop rotations were advocated because of their multiple benefits. Hence we explored the energy requirement and carbon footprint of conservation agriculture (CA) based maize production systems. Coated N fertilizer [sulphur coated urea (SCU) and neem coated urea (NCU)] were compared with unfertilized and uncoated prilled urea (PU) in the scenario of with and without residue retention on permanent beds (PB) under diversified maize systems [MMuMb, maize-mustard-mungbean and MWMb, maize-wheat-mungbean] in search of a sustainable and energy efficient production system with lesser C-footprint. Results of the 4-year study showed that crops planted on permanent bed with crop residue (PB+R) registered 11.7% increase in system productivity compared to PB without residue (PB-R). N management through Neem coated urea (NCU) recorded 2.3 and 10.9% higher system productivity compared with non-coated prilled urea plot under PB-R and PB+R, respectively. MMuMb was marginally superior than MWMb system in terms of cropping sequence yield, profitability, and energy and carbon use efficiency. Crop residue retention in zero tilled PB increased cost of cultivation by 125 and 147 USD/ha in MMuMb and MWMb systems, respectively. The quantified carbon footprint value was higher in MWMb system. In CA-based practices, crop residues management contributed the highest energy input (61.5-68.4%) followed by fertilizer application (17-20%). Among N management practices, neem coated urea (NCU) significantly improved system productivity and profitability in all the residue applied plots compared to un-fertilized and prilled urea (PU) applied plots. Similarly, higher energy output was also observed in NCU treated plots. However, carbon footprint value was higher in PU (268-285 CO <subscript>2</subscript> -e kg/Mg) plots than NCU (259-264 CO <subscript>2</subscript> -e kg/Mg) treated plots. Thus, the study supports and recommends that the CA-based MMuMb system with efficient N management through NCU is an environmentally safe, clean and energy efficient one, hence can reduce carbon footprint, will ensure food security and will mitigate climate change.<br /> (Copyright © 2019 Elsevier B.V. All rights reserved.)
Details
- Language :
- English
- ISSN :
- 1879-1026
- Volume :
- 664
- Database :
- MEDLINE
- Journal :
- The Science of the total environment
- Publication Type :
- Academic Journal
- Accession number :
- 30763846
- Full Text :
- https://doi.org/10.1016/j.scitotenv.2019.01.425