Back to Search Start Over

Affordable Fabrication of Conductive Electrodes and Dielectric Films for a Paper-based Digital Microfluidic Chip.

Authors :
Soum V
Kim Y
Park S
Chuong M
Ryu SR
Lee SH
Tanev G
Madsen J
Kwon OS
Shin K
Source :
Micromachines [Micromachines (Basel)] 2019 Feb 07; Vol. 10 (2). Date of Electronic Publication: 2019 Feb 07.
Publication Year :
2019

Abstract

In order to fabricate a digital microfluidic (DMF) chip, which requires a patterned array of electrodes coated with a dielectric film, we explored two simple methods: Ballpoint pen printing to generate the electrodes, and wrapping of a dielectric plastic film to coat the electrodes. For precise and programmable printing of the patterned electrodes, we used a digital plotter with a ballpoint pen filled with a silver nanoparticle (AgNP) ink. Instead of using conventional material deposition methods, such as chemical vapor deposition, printing, and spin coating, for fabricating the thin dielectric layer, we used a simple method in which we prepared a thin dielectric layer using pre-made linear, low-density polyethylene (LLDPE) plastic (17-μm thick) by simple wrapping. We then sealed it tightly with thin silicone oil layers so that it could be used as a DMF chip. Such a treated dielectric layer showed good electrowetting performance for a sessile drop without contact angle hysteresis under an applied voltage of less than 170 V. By using this straightforward fabrication method, we quickly and affordably fabricated a paper-based DMF chip and demonstrated the digital electrofluidic actuation and manipulation of drops.

Details

Language :
English
ISSN :
2072-666X
Volume :
10
Issue :
2
Database :
MEDLINE
Journal :
Micromachines
Publication Type :
Academic Journal
Accession number :
30736440
Full Text :
https://doi.org/10.3390/mi10020109