Back to Search Start Over

Histone deacetylase inhibitor LMK235 attenuates vascular constriction and aortic remodelling in hypertension.

Authors :
Choi SY
Kee HJ
Sun S
Seok YM
Ryu Y
Kim GR
Kee SJ
Pflieger M
Kurz T
Kassack MU
Jeong MH
Source :
Journal of cellular and molecular medicine [J Cell Mol Med] 2019 Apr; Vol. 23 (4), pp. 2801-2812. Date of Electronic Publication: 2019 Feb 07.
Publication Year :
2019

Abstract

Here, we report that LMK235, a class I and histone deacetylase (HDAC6)-preferential HDAC inhibitor, reduces hypertension via inhibition of vascular contraction and vessel hypertrophy. Angiotensin II-infusion mice and spontaneously hypertensive rats (SHRs) were used to test the anti-hypertensive effect of LMK235. Daily injection of LMK235 lowered angiotensin II-induced systolic blood pressure (BP). A reduction in systolic BP in SHRs was observed on the second day when SHRs were treated with 3 mg/kg LMK235 every 3 days. However, LMK235 treatment did not affect angiotensin-converting enzyme 1 and angiotensin II receptor mRNA expression in either hypertensive model. LMK235, acting via the nitric oxide pathway, facilitated the relaxing of vascular contractions induced by a thromboxane A2 agonist in the rat aortic and mesenteric artery ring test. In addition, LMK235 increased nitric oxide production in HUVECs and inhibited the increasing of aortic wall thickness in both animal hypertensive models. LMK235 decreased the enhanced cell cycle-related genes cyclin D1 and E2F3 in angiotensin II-infusion mice and restored the decreased p21 expression. In addition, LMK235 suppressed calcium calmodulin-dependent protein kinase II (CaMKII) α, which is related to vascular smooth muscle cell proliferation. Inhibition or knockdown of HDAC5 blocked the CaMKIIα-induced cell cycle gene expression. Immunoprecipitation demonstrated that class I HDACs were involved in the inhibition of CaMKII α-induced HDAC4/5 by LMK235. We suggest that LMK235 should be further investigated for its use in the development of new therapeutic options to treat hypertension via reducing vascular hyperplasia or vasoconstriction.<br /> (© 2019 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.)

Details

Language :
English
ISSN :
1582-4934
Volume :
23
Issue :
4
Database :
MEDLINE
Journal :
Journal of cellular and molecular medicine
Publication Type :
Academic Journal
Accession number :
30734467
Full Text :
https://doi.org/10.1111/jcmm.14188