Back to Search Start Over

When does a hydrogen bond become a van der Waals interaction? a topological answer.

Authors :
Tantardini C
Source :
Journal of computational chemistry [J Comput Chem] 2019 Mar 30; Vol. 40 (8), pp. 937-943.
Publication Year :
2019

Abstract

The hydrogen bond (H-bond) is among the most important noncovalent interaction (NCI) for bioorganic compounds. However, no "energy border" has yet been identified to distinguish it from van der Waals (vdW) interaction. Thus, classifying NCIs and interpreting their physical and chemical importance remain open to great subjectivity. In this work, the "energy border" between vdW and H-bonding interactions was identified using a dimer of water, as well as for a series of classical and nonclassical H-bonding systems. Through means of the quantum theory of atoms in molecules and in particular the source function, it was possible to clearly identify the transition from H-bonding to vdW bonding via analysis of the electronic structure. This "energy border" was identified both on elongating the interatomic interaction and by varying the contact angle. Hence, this study also redefines the "critic angle" previously proposed by Galvão et al. (J. Phys. Chem. A 2013, 117, 12668). Consequently, such "energy border" through an analysis of atomic basins volume variation was possible to identify the end of long-range interactions. © 2019 Wiley Periodicals, Inc.<br /> (© 2019 Wiley Periodicals, Inc.)

Details

Language :
English
ISSN :
1096-987X
Volume :
40
Issue :
8
Database :
MEDLINE
Journal :
Journal of computational chemistry
Publication Type :
Academic Journal
Accession number :
30681190
Full Text :
https://doi.org/10.1002/jcc.25774