Back to Search
Start Over
Drought Stress Enhances Up-Regulation of Anthocyanin Biosynthesis in Grapevine leafroll-associated virus 3-Infected in vitro Grapevine (Vitis vinifera) Leaves.
- Source :
-
Plant disease [Plant Dis] 2017 Sep; Vol. 101 (9), pp. 1606-1615. Date of Electronic Publication: 2017 Jul 10. - Publication Year :
- 2017
-
Abstract
- Reddish-purple coloration on the leaf blades and downward rolling of leaf margins are typical symptoms of grapevine leafroll disease (GLD) in red-fruited grapevine cultivars. These typical symptoms are attributed to the expression of genes encoding enzymes for anthocyanins synthesis, and the accumulation of flavonoids in diseased leaves. Drought has been proven to accelerate development of GLD symptoms in virus-infected leaves of grapevine. However, it is not known how drought affects GLD expression nor how anthocyanin biosynthesis in virus-infected leaves is altered. The present study used HPLC to determine the types and levels of anthocyanins, and applied reverse transcription quantitative polymerase chain reaction (RT-qPCR) to analyze the expression of genes encoding enzymes for anthocyanin synthesis. Plantlets of Grapevine leafroll-associated virus 3 (GLRaV-3)-infected Vitis vinifera 'Cabernet Sauvignon' were grown in vitro under PEG-induced drought stress. HPLC found no anthocyanin-related peaks in the healthy plantlets with or without PEG-induced stress, while 11 peaks were detected in the infected plantlets with or without PEG-induced drought stress, but the peaks were significantly higher in infected drought-stressed plantlets. Increased accumulation of total anthocyanin compounds was related to the development of GLD symptoms in the infected plantlets under PEG stress. The highest level of up-regulated gene expression was found in GLRaV-3-infected leaves with PEG-induced drought stress. Analyses of variance and correlation of anthocyanin accumulation with related gene expression levels found that GLRaV-3-infection was the key factor in increased anthocyanin accumulation. This accumulation involved the up-regulation of two key genes, MYBA1 and UFGT, and their expression levels were further enhanced by drought stress.
Details
- Language :
- English
- ISSN :
- 0191-2917
- Volume :
- 101
- Issue :
- 9
- Database :
- MEDLINE
- Journal :
- Plant disease
- Publication Type :
- Academic Journal
- Accession number :
- 30677332
- Full Text :
- https://doi.org/10.1094/PDIS-01-17-0104-RE