Back to Search Start Over

Mitochondrial stress triggers a pro-survival response through epigenetic modifications of nuclear DNA.

Authors :
Mayorga L
Salassa BN
Marzese DM
Loos MA
Eiroa HD
Lubieniecki F
García Samartino C
Romano PS
Roqué M
Source :
Cellular and molecular life sciences : CMLS [Cell Mol Life Sci] 2019 Apr; Vol. 76 (7), pp. 1397-1417. Date of Electronic Publication: 2019 Jan 23.
Publication Year :
2019

Abstract

Mitochondrial dysfunction represents an important cellular stressor and when intense and persistent cells must unleash an adaptive response to prevent their extinction. Furthermore, mitochondria can induce nuclear transcriptional changes and DNA methylation can modulate cellular responses to stress. We hypothesized that mitochondrial dysfunction could trigger an epigenetically mediated adaptive response through a distinct DNA methylation patterning. We studied cellular stress responses (i.e., apoptosis and autophagy) in mitochondrial dysfunction models. In addition, we explored nuclear DNA methylation in response to this stressor and its relevance in cell survival. Experiments in cultured human myoblasts revealed that intense mitochondrial dysfunction triggered a methylation-dependent pro-survival response. Assays done on mitochondrial disease patient tissues showed increased autophagy and enhanced DNA methylation of tumor suppressor genes and pathways involved in cell survival regulation. In conclusion, mitochondrial dysfunction leads to a "pro-survival" adaptive state that seems to be triggered by the differential methylation of nuclear genes.

Details

Language :
English
ISSN :
1420-9071
Volume :
76
Issue :
7
Database :
MEDLINE
Journal :
Cellular and molecular life sciences : CMLS
Publication Type :
Academic Journal
Accession number :
30673822
Full Text :
https://doi.org/10.1007/s00018-019-03008-5