Back to Search
Start Over
Tandem gene duplication and recombination at the AT3 locus in the Solanaceae, a gene essential for capsaicinoid biosynthesis in Capsicum.
- Source :
-
PloS one [PLoS One] 2019 Jan 23; Vol. 14 (1), pp. e0210510. Date of Electronic Publication: 2019 Jan 23 (Print Publication: 2019). - Publication Year :
- 2019
-
Abstract
- Capsaicinoids are compounds synthesized exclusively in the genus Capsicum and are responsible for the burning sensation experienced when consuming hot pepper fruits. To date, only one gene, AT3, a member of the BAHD family of acyltransferases, is currently known to have a measurable quantitative effect on capsaicinoid biosynthesis. Multiple AT3 paralogs exist in the Capsicum genome, but their evolutionary relationships have not been characterized well. Recessive alleles at this locus result in absence of capsaicinoids in pepper fruit. To explore the evolution of AT3 in Capsicum and the Solanaceae, we sequenced this gene from diverse Capsicum genotypes and species, along with a number of representative solanaceous taxa. Our results revealed that the coding region of AT3 is highly conserved throughout the family. Further, we uncovered a tandem duplication that predates the diversification of the Solanaceae taxa sampled in this study. This pair of tandem duplications were designated AT3-1 and AT3-2. Sequence alignments showed that the AT3-2 locus, a pseudogene, retains regions of amino acid conservation relative to AT3-1. Gene tree estimation demonstrated that AT3-1 and AT3-2 form well supported, distinct clades. In C. rhomboideum, a non-pungent basal Capsicum species, we describe a recombination event between AT3-1 and AT3-2 that modified the putative active site of AT3-1, also resulting in a frame-shift mutation in the second exon. Our data suggest that duplication of the original AT3 representative, in combination with divergence and pseudogene degeneration, may account for the patterns of sequence divergence and punctuated amino acid conservation observed in this study. Further, an early rearrangement in C. rhomboidium could account for the absence of pungency in this Capsicum species.<br />Competing Interests: The authors have declared that no competing interests exist.
- Subjects :
- Acyltransferases genetics
Acyltransferases metabolism
Base Sequence
Capsaicin metabolism
Capsicum classification
Capsicum metabolism
Phylogeny
Sequence Analysis, DNA
Sequence Homology, Nucleic Acid
Solanaceae classification
Solanaceae metabolism
Species Specificity
Capsaicin analogs & derivatives
Capsicum genetics
Gene Duplication
Genes, Plant genetics
Recombination, Genetic
Solanaceae genetics
Subjects
Details
- Language :
- English
- ISSN :
- 1932-6203
- Volume :
- 14
- Issue :
- 1
- Database :
- MEDLINE
- Journal :
- PloS one
- Publication Type :
- Academic Journal
- Accession number :
- 30673734
- Full Text :
- https://doi.org/10.1371/journal.pone.0210510