Back to Search Start Over

Poly(l-lactide) and Poly(l-lactide- co-trimethylene carbonate) Melt-Spun Fibers: Structure-Processing-Properties Relationship.

Authors :
Fuoco T
Mathisen T
Finne-Wistrand A
Source :
Biomacromolecules [Biomacromolecules] 2019 Mar 11; Vol. 20 (3), pp. 1346-1361. Date of Electronic Publication: 2019 Feb 04.
Publication Year :
2019

Abstract

l-Lactide/trimethylene carbonate copolymers have been produced as multifilament fibers by high-speed melt-spinning. The relationship existing between the composition, processing parameters and physical properties of the fibers has been disclosed by analyzing how the industrial process induced changes at the macromolecular level, i.e., the chain microstructure and crystallinity development. A poly(l-lactide) and three copolymers having trimethylene carbonate contents of 5, 10 and 18 mol % were synthesized with high molecular weight ( M <subscript>n</subscript> ) up to 377 kDa and narrow dispersity. Their microstructure, crystallinity and thermal properties were dictated by the composition. The spinnability was then assessed for all the as-polymerized materials: four melt-spun multifilament fibers with increasing linear density were collected for each (co)polymer at a fixed take-up speed of 1800 m min <superscript>-1</superscript> varying the mass throughput during the extrusion. A linear correlation resulted between the as-spun fiber properties and the linear density. The as-spun fibers could be further oriented, developing more crystallinity and improving their tensile properties by a second stage of hot-drawing. This ability was dependent on the composition and crystallinity achieved during the melt-spinning and the parameters selected for the hot-drawing, such as temperature, draw ratio and input speed. The crystalline structure evolved to a more stable form, and the degree of crystallinity increased from 0-52% to 25-66%. Values of tensile strength and Young's modulus up to 0.32-0.61 GPa and 4.9-8.4 GPa were respectively achieved.

Details

Language :
English
ISSN :
1526-4602
Volume :
20
Issue :
3
Database :
MEDLINE
Journal :
Biomacromolecules
Publication Type :
Academic Journal
Accession number :
30665299
Full Text :
https://doi.org/10.1021/acs.biomac.8b01739